Quaternion Neural Networks Applied to Prostate Cancer Gleason Grading

被引:37
|
作者
Greenblatt, Aaron [1 ]
Mosquera-Lopez, Clara [2 ]
Agaian, Sos [2 ]
机构
[1] Stanford Univ, Dept Elect Eng, Stanford, CA 94305 USA
[2] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX USA
关键词
Neural network; quaternion; prostate cancer; wavelet transform; automated Gleason grading; PATHOLOGICAL IMAGES; CLASSIFICATION; CARCINOMA; GLAND;
D O I
10.1109/SMC.2013.199
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Diagnosis of prostate cancer currently involves visual examination of samples for the assignment of Gleason grades using a microscope, a time-consuming and subjective process. Computer-aided diagnosis (CAD) of histopathology images has become an important research area in diagnostic pathology. This paper presents a scheme to improve the accuracy of existing CAD systems for Gleason grading on digital biopsy slides by combining color and multi-scale information using quaternion algebra. The distinguishing features of presented algorithm are: 1) use of the quaternion wavelet transform and modified local binary patterns for the analysis of image texture in regions of interest; 2) A two-stage classification method: (a) a quaternion neural network with a new high-speed learning algorithm used for multiclass classification, and (b) several binary Support Vector Machine (SVM) classifiers used for classification refinement. In order to evaluate performance, hold-one-out cross validation is applied to a data set of 71 images of prostatic carcinomas belonging to Gleason grades 3, 4 and 5. The developed system assigns the correct Gleason grade in 98.87% of test cases and outperforms other published automatic Gleason grading systems. Moreover, averaged over all the classes, testing of the proposed method shows a specificity rate of 0.990 and a sensitivity rate of 0.967. Experimental results demonstrate the proposed scheme can help pathologists and radiologists diagnose prostate cancer more efficiently and with better reproducability.
引用
收藏
页码:1144 / 1149
页数:6
相关论文
共 50 条
  • [31] Automatic Gleason grading of prostate cancer using SLIM and machine learning
    Nguyen, Tan H.
    Sridharan, Shamira
    Marcias, Virgilia
    Balla, Andre K.
    Do, Minh N.
    Popescu, Gabriel
    QUANTITATIVE PHASE IMAGING II, 2016, 9718
  • [32] Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge
    Bulten, Wouter
    Kartasalo, Kimmo
    Chen, Po-Hsuan Cameron
    Strom, Peter
    Pinckaers, Hans
    Nagpal, Kunal
    Cai, Yuannan
    Steiner, David F.
    van Boven, Hester
    Vink, Robert
    Hulsbergen-van de Kaa, Christina
    van der Laak, Jeroen
    Amin, Mahul B.
    Evans, Andrew J.
    van der Kwast, Theodorus
    Allan, Robert
    Humphrey, Peter A.
    Gronberg, Henrik
    Samaratunga, Hemamali
    Delahunt, Brett
    Tsuzuki, Toyonori
    Hakkinen, Tomi
    Egevad, Lars
    Demkin, Maggie
    Dane, Sohier
    Tan, Fraser
    Valkonen, Masi
    Corrado, Greg S.
    Peng, Lily
    Mermel, Craig H.
    Ruusuvuori, Pekka
    Litjens, Geert
    Eklund, Martin
    NATURE MEDICINE, 2022, 28 (01) : 154 - +
  • [33] A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score
    Epstein, Jonathan I.
    Zelefsky, Michael J.
    Sjoberg, Daniel D.
    Nelson, Joel B.
    Egevad, Lars
    Magi-Galluzzi, Cristina
    Vickers, Andrew J.
    Parwani, Anil V.
    Reuter, Victor E.
    Fine, Samson W.
    Eastham, James A.
    Wiklund, Peter
    Han, Misop
    Reddy, Chandana A.
    Ciezki, Jay P.
    Nyberg, Tommy
    Klein, Eric A.
    EUROPEAN UROLOGY, 2016, 69 (03) : 428 - 435
  • [34] Current practice of Gleason grading of prostate carcinoma
    Antonio Lopez-Beltran
    Gregor Mikuz
    Rafael J. Luque
    Roberta Mazzucchelli
    Rodolfo Montironi
    Virchows Archiv, 2006, 448 : 111 - 118
  • [35] Current practice of Gleason grading of prostate carcinoma
    Lopez-Beltran, A
    Mikuz, G
    Luque, R
    Mazzucchelli, R
    Montironi, R
    VIRCHOWS ARCHIV, 2006, 448 (02) : 111 - 118
  • [36] Gleason grading and prognostic factors in carcinoma of the prostate
    Humphrey, PA
    MODERN PATHOLOGY, 2004, 17 (03) : 292 - 306
  • [37] Interobserver reproducibility of gleason grading of prostate carcinoma
    Oyama, T
    Allsbrook, W
    Kurokawa, K
    Mikami, Y
    Segawa, A
    Sano, T
    Nakajima, T
    Suzuki, K
    Mangold, K
    Epstein, J
    LABORATORY INVESTIGATION, 2003, 83 (01) : 164A - 165A
  • [38] Faster and Better: Artificial Intelligence Assisted Gleason Group Grading in Prostate Cancer
    Juhila, Juuso
    Kovala, Marja
    Noora, Neittaanmaki
    Puttonen, Henri
    Manninen, Anniina
    Wester, Anniina
    Blom, Sami
    Karjalainen, Marika
    LABORATORY INVESTIGATION, 2023, 103 (03) : S1295 - S1296
  • [39] Reproducibility of Gleason grading of prostate cancer can be improved by the use of reference images
    Egevad, L
    UROLOGY, 2001, 57 (02) : 291 - 295
  • [40] Re: Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer: The PANDA Challenge
    Bulten, W.
    Karatasalo, K.
    Chen, P. Cameron
    Dasgupta, Prokar
    EUROPEAN UROLOGY, 2022, 82 (05) : 571 - 571