Total vertex irregularity strength of certain equitable complete m-partite graphs

被引:0
|
作者
Guo, Jing [1 ]
Chen, Xiang'en [1 ]
Wang, Zhiwen [2 ]
Yao, Bing [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
vertex irregular total k-labeling; weight; total vertex irregularity strength; equitable complete 3-partite graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple undirected graph G with vertex set V and edge set E, a total k labeling lambda : V boolean OR E -> {1,2, ..., k} is called a vertex irregular total k labeling of G if for every two distinct vertices x and y of G their weights wt(x) and wt(y) are distinct where the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k for which the graph G has a vertex irregular total k-labeling. The complete m partite graph on n vertices in which each part has either left perpendicularn/mleft perpendicular or inverted right perpendicularn/minverted right perpendicula r vertices is denoted by T-m,T-n. The total vertex irregularity strength of some equitable complete m partite graphs, namely, T-m,T-m+1, T-m,T-m+2, T-m,T-2m, T-m,T-2m+1, T-m,T-3m-1 (m >= 4), T-m,T-n (n = 3m + r,r = 1,2, ..., m - 1), and equitable complete 3-partite graphs have been studied in this paper.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [41] The equitable vertex arboricity of complete tripartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    INFORMATION PROCESSING LETTERS, 2015, 115 (12) : 977 - 982
  • [42] On the Equitable Vertex Arboricity of Complete Bipartite Graphs
    Mao, Yaping
    Guo, Zhiwei
    Zhao, Haixing
    Ye, Chengfu
    UTILITAS MATHEMATICA, 2016, 99 : 403 - 411
  • [43] On the equitable vertex arboricity of complete tripartite graphs
    Guo, Zhiwei
    Zhao, Haixing
    Mao, Yaping
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [44] On the equitable chromatic number of complete n-partite graphs
    Lam, PCB
    Shiu, WC
    Tong, CS
    Zhang, ZF
    DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) : 307 - 310
  • [45] Determining equitable total chromatic number for infinite classes of complete r-partite graphs
    da Silva, A. G.
    Dantas, S.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2021, 296 (296) : 56 - 67
  • [46] On the total vertex irregularity strength of firecracker graph
    Haryanti, A.
    Indriati, D.
    Martini, T. S.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [47] On total vertex irregularity strength of generalized uniform cactus chain graphs with pendant vertices
    Rosyida, Isnaini
    Mulyono
    Indriati, Diari
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (06): : 1369 - 1380
  • [48] The total vertex irregularity strength of generalized helm graphs and prisms with outer pendant edges
    Indriati, Diari
    Widodo
    Wijayanti, Indah E.
    Sugeng, Kiki A.
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 14 - 26
  • [49] On The Total Irregularity Strength of Regular Graphs
    Ramdani, Rismawati
    Salman, A. N. M.
    Assiyatun, Hilda
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2015, 47 (03) : 281 - 295
  • [50] On the vertex-distinguishing proper total colorings of complete p-partite graphs with equipotent parts
    Yang, Fang
    Chen, Xiang-en
    Ma, Chunyan
    ARS COMBINATORIA, 2017, 134 : 233 - 249