Using multiple observationally-based constraints to estimate climate sensitivity

被引:87
|
作者
Annan, JD [1 ]
Hargreaves, JC [1 ]
机构
[1] JAMSTEC, Frontier Res Ctr Global Change, Yokohama, Kanagawa 2360001, Japan
关键词
D O I
10.1029/2005GL025259
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Climate sensitivity has been subjectively estimated to be likely to lie in the range of 1.5-4.5 degrees C, and this uncertainty contributes a substantial part of the total uncertainty in climate change projections over the coming century. Objective observationally-based estimates have so far failed to improve on this upper bound, with many estimates even suggesting a significant probability of climate sensitivity exceeding 6 degrees C. In this paper, we show how it is possible to greatly reduce this uncertainty by using Bayes' Theorem to combine several independent lines of evidence. Based on some conservative assumptions regarding the value of independent estimates, we conclude that climate sensitivity is very unlikely(<5% probability) to exceed 4.5 degrees C. We cannot assign a significant probability to climate sensitivity exceeding 6 degrees C without making what appear to be wholly unrealistic exaggerations about the uncertainties involved. This represents a significant lowering of the previously-estimated bound.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [41] Impacts of Observational Constraints Related to Sea Level on Estimates of Climate Sensitivity
    Vega-Westhoff, Ben
    Silver, Ryan L.
    Hartin, Corinne A.
    Wong, Tony E.
    Keller, Klaus
    EARTHS FUTURE, 2019, 7 (06) : 677 - 690
  • [42] Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity
    Timothy A. Myers
    Ryan C. Scott
    Mark D. Zelinka
    Stephen A. Klein
    Joel R. Norris
    Peter M. Caldwell
    Nature Climate Change, 2021, 11 : 501 - 507
  • [43] A Bayesian framework for emergent constraints: case studies of climate sensitivity with PMIP
    Renoult, Martin
    Annan, James Douglas
    Hargreaves, Julia Catherine
    Sagoo, Navjit
    Flynn, Clare
    Kapsch, Marie-Luise
    Li, Qiang
    Lohmann, Gerrit
    Mikolajewicz, Uwe
    Ohgaito, Rumi
    Shi, Xiaoxu
    Zhang, Qiong
    Mauritsen, Thorsten
    CLIMATE OF THE PAST, 2020, 16 (05) : 1715 - 1735
  • [44] Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity
    Myers, Timothy A.
    Scott, Ryan C.
    Zelinka, Mark D.
    Klein, Stephen A.
    Norris, Joel R.
    Caldwell, Peter M.
    NATURE CLIMATE CHANGE, 2021, 11 (06) : 501 - +
  • [45] Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivity
    Smith, C. J.
    Harris, G. R.
    Palmer, M. D.
    Bellouin, N.
    Collins, W.
    Myhre, G.
    Schulz, M.
    Golaz, J. -C.
    Ringer, M.
    Storelvmo, T.
    Forster, P. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (13)
  • [46] SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics
    McFarquhar, GM
    Iacobellis, S
    Somerville, RCJ
    JOURNAL OF CLIMATE, 2003, 16 (11) : 1643 - 1664
  • [47] Using temperature sensitivity to estimate shiftable electricity demand
    Roberts, Michael J.
    Zhang, Sisi
    Yuan, Eleanor
    Jones, James
    Fripp, Matthias
    ISCIENCE, 2022, 25 (09)
  • [48] Using Lyapunov Exponents to Estimate Sensitivity to Process Variability
    Ramos, Elias de Almeida
    Reis, Ricardo
    2023 IEEE 14TH LATIN AMERICA SYMPOSIUM ON CIRCUITS AND SYSTEMS, LASCAS, 2023, : 76 - 79
  • [49] Estimate of the ultimate sensitivity of multiple-@beam interferometers for displacement measurement
    Troitskii, Y. V.
    Quantum Electronics(English Translation of the Journal Kvantovaya Elektronika), 28 (01):
  • [50] Using samples to estimate the sensitivity and specificity of a surveillance process
    McBryde, Emma S.
    Kelly, Heath
    Marshall, Caroline
    Russo, Philip L.
    McElwain, D. L. Sean
    Pettitt, Anthony N.
    INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2008, 29 (06): : 559 - 563