BayesPy: Variational Bayesian Inference in Python']Python

被引:0
|
作者
Luttinen, Jaakko [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
关键词
variational Bayes; probabilistic programming; !text type='Python']Python[!/text;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
BayesPy is an open-source Python software package for performing variational Bayesian inference. It is based on the variational message passing framework and supports conjugate exponential family models. By removing the tedious task of implementing the variational Bayesian update equations, the user can construct models faster and in a less error-prone way. Simple syntax, flexible model construction and efficient inference make BayesPy suitable for both average and expert Bayesian users. It also supports some advanced methods such as stochastic and collapsed variational inference.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Hemodynamic effects of python']python neuropeptide γ in the anaesthetized python']python, Python']Python regius
    Skovgarrd, N
    Galli, GLJ
    Taylor, EW
    Conlon, JM
    Wang, T
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2004, 139 (01): : 148 - 149
  • [32] Formalizing Model Inference of MicroPython']Python
    de Ferro, Carlos Mao
    Cogumbreiro, Tiago
    Martins, Francisco
    2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W, 2023, : 283 - 289
  • [33] ABC-SysBio-approximate Bayesian computation in Python']Python with GPU support
    Liepe, Juliane
    Barnes, Chris
    Cule, Erika
    Erguler, Kamil
    Kirk, Paul
    Toni, Tina
    Stumpf, Michael P. H.
    BIOINFORMATICS, 2010, 26 (14) : 1797 - 1799
  • [34] HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python']Python
    Wiecki, Thomas V.
    Sofer, Imri
    Frank, Michael J.
    FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [35] Bayesian Neural Networks via MCMC: A Python']Python-Based Tutorial
    Chandra, Rohitash
    Simmons, Joshua
    IEEE ACCESS, 2024, 12 : 70519 - 70549
  • [36] PySSM : APython']Python Module for Bayesian Inference of Linear Gaussian State Space Models
    Strickland, Christopher M.
    Burdett, Robert L.
    Mengersen, Kerrie L.
    Denham, Robert J.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (06): : 1 - 37
  • [37] Principled and practical static analysis for Python']Python: Weakest precondition inference of hyperparameter constraints
    Rak-amnouykit, Ingkarat
    Milanova, Ana
    Baudart, Guillaume
    Hirzel, Martin
    Dolby, Julian
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (03): : 363 - 393
  • [38] Dynamic Inference of Likely Symbolic Tensor Shapes in Python']Python Machine Learning Programs
    Sen, Koushik
    Zheng, Daniel
    2024 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE, ICSE-SEIP 2024, 2024, : 147 - 156
  • [39] PROLAPSE OF CLOACA IN A PYTHON']PYTHON (PYTHON']PYTHON-MOLURUS)
    GEORGE, PO
    JOSEPH, J
    INDIAN VETERINARY JOURNAL, 1989, 66 (07): : 648 - 649
  • [40] NIFTY - Numerical Information Field Theory A versatile PYTHON']PYTHON library for signal inference
    Selig, M.
    Bell, M. R.
    Junklewitz, H.
    Oppermann, N.
    Reinecke, M.
    Greiner, M.
    Pachajoa, C.
    Ensslin, T. A.
    ASTRONOMY & ASTROPHYSICS, 2013, 554