A topological Abelian group G is Pontryagin reflexive, or P-reflexive for short, if the natural homomorphism of G to its bidual group is a topological isomorphism. We look at the question, set by Kaplan in 1948, of characterizing the topological Abelian groups that are P-reflexive. Thus, we find some conditions on an arbitrary group G that are equivalent to the P-reflexivity of G and give an example that corrects a wrong statement appearing in previously existent characterizations of P-reflexive groups.