Metric duality for Abelian groups

被引:0
|
作者
Niemiec, Piotr [1 ]
机构
[1] Uniwersytet Jagiellonski, Wydzial Matematyki & Informatyki, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Pontryagin's duality; LCA group; Invariant metric; Dual group; Reflexive topological Abelian group; Reflexive Banach space;
D O I
10.1016/j.topol.2024.109155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of the paper is to introduce the concept of metric duality in the category of topological Abelian groups that extends the classical notion of duality for normed vector spaces and behaves quite nicely for LCA groups (equipped with nice metrics). In particular, it is shown that each Polish LCA group admits a reflexive proper metric and, more generally, all LCA groups possess reflexive (proper) metric structures. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Abelian fields and duality of abelian groups
    Baer, R
    AMERICAN JOURNAL OF MATHEMATICS, 1937, 59 : 869 - 888
  • [2] Formal duality in finite abelian groups
    Li, Shuxing
    Pott, Alexander
    Schueler, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 354 - 405
  • [3] Duality of totally bounded Abelian groups
    Raczkowski, SU
    Trigos-Arrieta, FJ
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2001, 7 (01): : 1 - 12
  • [4] Pontryagin duality for topological Abelian groups
    Hernández, S
    MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) : 493 - 503
  • [5] An approach to duality on abelian precompact groups
    Chasco, M. J.
    Martin-Peinador, E.
    JOURNAL OF GROUP THEORY, 2008, 11 (05) : 635 - 643
  • [6] Pontryagin duality for topological Abelian groups
    Salvador Hernández
    Mathematische Zeitschrift, 2001, 238 : 493 - 503
  • [7] An extension of Warfield duality for Abelian groups
    Goeters, HP
    JOURNAL OF ALGEBRA, 1996, 180 (03) : 848 - 861
  • [8] Metric spaces related to Abelian groups
    Veisi, Amir
    Delbaznasab, Ali
    APPLIED GENERAL TOPOLOGY, 2021, 22 (01): : 169 - 181
  • [9] Convexity of sets in metric Abelian groups
    Fechner, Wlodzimierz
    Pales, Zsolt
    FORUM MATHEMATICUM, 2020, 32 (06) : 1477 - 1486
  • [10] PONTRYAGIN DUALITY FOR ABELIAN K-GROUPS
    LAMARTIN, WF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A619 - A620