A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

被引:10
|
作者
Lee, Kookjin [1 ,2 ]
Elman, Howard C. [1 ,3 ]
Sousedik, Bedrich [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, Livermore, CA 94550 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
基金
美国国家科学基金会;
关键词
stochastic Galerkin method; Navier-Stokes equations; low-rank approximation; ITERATIVE SOLVERS; POLYNOMIAL CHAOS; DECOMPOSITION; ALGORITHM;
D O I
10.1137/17M1151912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier-Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.
引用
收藏
页码:1275 / 1300
页数:26
相关论文
共 50 条