A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

被引:10
|
作者
Lee, Kookjin [1 ,2 ]
Elman, Howard C. [1 ,3 ]
Sousedik, Bedrich [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, Livermore, CA 94550 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
基金
美国国家科学基金会;
关键词
stochastic Galerkin method; Navier-Stokes equations; low-rank approximation; ITERATIVE SOLVERS; POLYNOMIAL CHAOS; DECOMPOSITION; ALGORITHM;
D O I
10.1137/17M1151912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier-Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.
引用
收藏
页码:1275 / 1300
页数:26
相关论文
共 50 条
  • [21] On the Navier-Stokes equations with variable viscosity in a noncylindrical domain
    de Araujo, G. M.
    Miranda, M. Milla
    Medeiros, L. A.
    APPLICABLE ANALYSIS, 2007, 86 (03) : 287 - 313
  • [22] PRECONDITIONING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    He, Xin
    Neytcheva, Maya
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (05) : 461 - 482
  • [23] Navier-Stokes equations in a thin domain with vanishing viscosity
    Laydi, MR
    Lenzner, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 127 - 130
  • [24] A SYMMETRICAL VISCOSITY SPLITTING SCHEME FOR THE NAVIER-STOKES EQUATIONS
    张平文
    Numerical Mathematics(Theory,Methods and Applications), 1992, (01) : 97 - 113
  • [25] Towards a heterogeneous architecture solver for the incompressible Navier-Stokes equations
    Wang, Yunting
    He, Xin
    Yang, Shaofeng
    Tan, Guangming
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2020, 2 (02) : 123 - 134
  • [26] AN ALGEBRAIC MULTIGRID SOLVER FOR THE NAVIER-STOKES EQUATIONS ON UNSTRUCTURED MESHES
    Lonsdale, R. D.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1993, 3 (01) : 3 - 14
  • [27] NAVIER-STOKES EQUATIONS
    STUART, CA
    QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 309 - &
  • [28] VECTORIZATION OF AN IMPLICIT NAVIER-STOKES SOLVER
    VAQUEZ, P
    ERRERA, MP
    DUTOYA, D
    RECHERCHE AEROSPATIALE, 1991, (01): : 17 - 29
  • [29] A NAVIER-STOKES SOLVER FOR TURBOMACHINERY APPLICATIONS
    ARNONE, A
    SWANSON, RC
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1993, 115 (02): : 305 - 313
  • [30] Navier-Stokes spectral solver in a sphere
    Auteri, F.
    Quartapelle, L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) : 7197 - 7214