Regular relations and monotone normal ordered spaces

被引:2
|
作者
Xu, XQ [1 ]
Liu, YM
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330027, Peoples R China
[3] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
关键词
regular relation; complete distributivity; monotone normality;
D O I
10.1142/S0252959904000160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the classical theorem of Zareckii about regular relations is generalized and an intrinsic characterization of regularity is obtained. Based on the generalized Zareckii theorem and the intrinsic characterization of regularity, the authors give a characterization of monotone normality of ordered spaces. A new proof of the Urysohn-Nachbin lemma is presented which is quite different from the classical one.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
  • [31] Monotone generalized contractions in partially ordered probabilistic metric spaces
    Ciric, Lj. B.
    Mihet, D.
    Saadati, R.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (17) : 2838 - 2844
  • [32] Monotone countable paracompactness and maps to ordered topological vector spaces
    Yamazaki, Kaori
    TOPOLOGY AND ITS APPLICATIONS, 2014, 169 : 51 - 70
  • [33] An intermediate value theorem for monotone operators in ordered Banach spaces
    Vadim Kostrykin
    Anna Oleynik
    Fixed Point Theory and Applications, 2012
  • [34] Monotone Generalized Nonlinear Contractions in Partially Ordered Metric Spaces
    Ljubomir Ćirić
    Nenad Cakić
    Miloje Rajović
    Jeong Sheok Ume
    Fixed Point Theory and Applications, 2008
  • [35] On fixed point theorems of monotone functions in Ordered metric spaces
    Kalyani, K.
    Seshagiri Rao, N.
    Mitiku, Belay
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1237 - 1250
  • [36] Convergence for pseudo monotone semiflows on product ordered topological spaces
    Yi, TS
    Huang, LH
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) : 429 - 456
  • [37] MONOTONE GENERALIZED WEAK CONTRACTIONS IN PARTIALLY ORDERED METRIC SPACES
    Saadati, R.
    Vaezpour, S. M.
    FIXED POINT THEORY, 2010, 11 (02): : 375 - 382
  • [38] WEAKLY NORMAL SPACES AND REGULAR SPACES . PRELIMINARY REPORT
    BALL, ES
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1092 - &
  • [39] Spaces whose regular preimages are normal
    LaBerge, T
    TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (03) : 179 - 188
  • [40] Ig*-NORMAL AND Ig*-REGULAR SPACES
    Ravi, O.
    Paranjothi, M.
    Murugesan, S.
    Padmasekaran, S.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 75 - 86