Regular relations and monotone normal ordered spaces

被引:2
|
作者
Xu, XQ [1 ]
Liu, YM
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330027, Peoples R China
[3] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
关键词
regular relation; complete distributivity; monotone normality;
D O I
10.1142/S0252959904000160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the classical theorem of Zareckii about regular relations is generalized and an intrinsic characterization of regularity is obtained. Based on the generalized Zareckii theorem and the intrinsic characterization of regularity, the authors give a characterization of monotone normality of ordered spaces. A new proof of the Urysohn-Nachbin lemma is presented which is quite different from the classical one.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
  • [21] A further study on ordered regular equivalence relations in ordered semihypergroups
    Tang, Jian
    Feng, Xinyang
    Davvaz, Bijan
    Xie, Xiang-Yun
    OPEN MATHEMATICS, 2018, 16 : 168 - 184
  • [22] Fitzpatrick transform of monotone relations in Hadamard spaces
    Moslemipour, A.
    Roohi, M.
    Mardanbeigi, M. R.
    Azhini, M.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02): : 173 - 193
  • [23] MONADS FOR REGULAR AND NORMAL SPACES
    BUTTON, RW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A644 - A645
  • [24] Regular linear relations on Banach spaces
    Teresa Alvarez
    Adrian Sandovici
    Banach Journal of Mathematical Analysis, 2021, 15
  • [25] Regular linear relations on Banach spaces
    Alvarez, Teresa
    Sandovici, Adrian
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [26] On the paper "Regular equivalence relations on ordered *-semihypergroups"
    Kehayopulu, Niovi
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2466 - 2476
  • [27] Monotone Generalized Nonlinear Contractions in Partially Ordered Metric Spaces
    Ciric, Ljubomir
    Cakic, Nenad
    Rajovic, Miloje
    Ume, Jeong Sheok
    FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [28] An intermediate value theorem for monotone operators in ordered Banach spaces
    Kostrykin, Vadim
    Oleynik, Anna
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [30] On fixed point theorems of monotone functions in Ordered metric spaces
    K. Kalyani
    N. Seshagiri Rao
    Belay Mitiku
    The Journal of Analysis, 2021, 29 : 1237 - 1250