Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling

被引:0
|
作者
Nürnberger, G [1 ]
Zeilfelder, F [1 ]
机构
[1] Univ Mannheim, Fak Math & Informat, D-68131 Mannheim, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local Lagrange interpolation schemes for quadratic C-1-splines on arbitrary triangulations with Powell-Sabin splits are constructed. By using the concept of weak interpolation, it is proved that the interpolation method yields optimal approximation order. We test our method by interpolating scattered data and show how the method can be applied for terrain modelling. We compare the interpolating splines on fine and coarse triangulations obtained from thinning strategies and analyze the data reduction.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 50 条
  • [1] Quartic splines on Powell-Sabin triangulations
    Groselj, Jan
    Krajnc, Marjeta
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 49 : 1 - 16
  • [2] Interpolation with quintic Powell-Sabin splines
    Speleers, Hendrik
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (05) : 620 - 635
  • [3] C1 hierarchical Riesz bases of Lagrange type on Powell-Sabin triangulations
    Maes, Jan
    Bultheel, Adhemar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (01) : 1 - 19
  • [4] Macro-elements and stable local bases for splines on Powell-Sabin triangulations
    Lai, MJ
    Schumaker, LL
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 335 - 354
  • [5] Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations
    Chen, Sunkang
    Liu, Huanwen
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (01) : 163 - 171
  • [6] Minimal energy surfaces on Powell-Sabin type triangulations
    Barrera, D.
    Fortes, M. A.
    Gonzalez, P.
    Pasadas, M.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 635 - 645
  • [7] Local subdivision of Powell-Sabin splines
    Speleers, Hendrik
    Dierckx, Paul
    Vandewalle, Stefan
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (05) : 446 - 462
  • [8] C1 cubic splines on Powell-Sabin triangulations
    Groselj, Jan
    krajnc, Marjeta
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 114 - 126
  • [9] Quasi-Interpolation in a Space of C2 Sextic Splines over Powell-Sabin Triangulations
    Eddargani, Salah
    Ibanez, Maria Jose
    Lamnii, Abdellah
    Lamnii, Mohamed
    Barrera, Domingo
    MATHEMATICS, 2021, 9 (18)
  • [10] Shape control in Powell-Sabin quasi-interpolation
    Manni, Carla
    ALGORITHMS FOR APPROXIMATION, PROCEEDINGS, 2007, : 219 - 239