MARKOV CHAIN MONTE CARLO INFERENCE FOR PROBABILISTIC LATENT TENSOR FACTORIZATION

被引:0
|
作者
Simsekli, Umut [1 ]
Cemgil, A. Taylan [1 ]
机构
[1] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey
关键词
Probabilistic Latent Tensor Factorization (PLTF); Markov Chain Monte Carlo (MCMC); Space Alternating Data Augmentation (SADA);
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modeling multiway data. Not only the popular tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents Markov Chain Monte Carlo procedures (namely the Gibbs sampler) for making inference on the PLTF framework. We provide the abstract algorithms that are derived for the general case and the overall procedure is illustrated on both synthetic and real data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Probabilistic Latent Tensor Factorization
    Yilmaz, Y. Kenan
    Cemgil, A. Taylan
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, 2010, 6365 : 346 - 353
  • [2] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [3] Markov Chain Monte Carlo for Exact Inference for Diffusions
    Sermaidis, Giorgos
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    Beskos, Alexandros
    Fearnhead, Paul
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 294 - 321
  • [4] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [5] Algorithms for probabilistic latent tensor factorization
    Yilmaz, Y. Kenan
    Cemgil, A. Taylan
    SIGNAL PROCESSING, 2012, 92 (08) : 1853 - 1863
  • [6] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [7] Markov Chain Monte Carlo and Variational Inference: Bridging the Gap
    Salimans, Tim
    Kingma, Diederik P.
    Welling, Max
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1218 - 1226
  • [8] Tree Bridging Markov Chain Monte Carlo for Ancestral Inference
    Heine, K.
    Beskos, A.
    De Iorio, M.
    Jasra, A.
    HUMAN HEREDITY, 2015, 80 (03) : 113 - 113
  • [9] Markov chain Monte Carlo exact inference for social networks
    McDonald, John W.
    Smith, Peter W. F.
    Forster, Jonathan J.
    SOCIAL NETWORKS, 2007, 29 (01) : 127 - 136
  • [10] Compiling Markov Chain Monte Carlo Algorithms for Probabilistic Modeling
    Huang, Daniel
    Tristan, Jean-Baptiste
    Morrisett, Greg
    ACM SIGPLAN NOTICES, 2017, 52 (06) : 111 - 125