Estimating stellar atmospheric parameters based on LASSO and support-vector regression

被引:12
|
作者
Lu, Yu [1 ]
Li, Xiangru [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: statistical; techniques: spectroscopic; stars: atmospheres; stars: fundamental parameters; DIGITAL SKY SURVEY; DATA RELEASE; SEGUE; CALIBRATION; VALIDATION; ABUNDANCE;
D O I
10.1093/mnras/stv1373
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A scheme for estimating atmospheric parameters T-eff, logg and [Fe/H] is proposed on the basis of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra from the Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fibre Spectroscopic Telescope (LAMOST) and Kurucz's model, respectively. The mean absolute errors are as follows: for the 40 000 SDSS spectra, 0.0062 dex for log T-eff (85.83 K for T-eff), 0.2035 dex for log g and 0.1512 dex for [Fe/H]; for the 23 963 LAMOST spectra, 0.0074 dex for log T-eff (95.37 K for T-eff), 0.1528 dex for log g and 0.1146 dex for [Fe/H]; for the 10 469 synthetic spectra, 0.0010 dex for log T-eff (14.42K for T-eff), 0.0123 dex for log g and 0.0125 dex for [Fe/H].
引用
收藏
页码:1394 / 1401
页数:8
相关论文
共 50 条
  • [41] Parameters selection of support vector regression by genetic algorithms
    Xi'an Univ. of Science and Technology, Xi'an 710054, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2006, 9 (1430-1433):
  • [42] Parameters Tuning in Support Vector Regression for Reliability Forecasting
    Zhao, Wei
    Tao, Tao
    Zio, Enrico
    2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 : 523 - 528
  • [43] FIXED PARAMETERS SUPPORT VECTOR REGRESSION FOR OUTLIER DETECTION
    Rana, Sohel
    Dhhan, Waleed
    Midi, Habshah
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2018, 52 (02): : 267 - 282
  • [44] Estimating normal regression parameters on the basis of an extended measurement vector
    Yu. G. Bulychev
    A. A. Mozol’
    V. M. Chelakhov
    A. A. Oplachko
    Measurement Techniques, 2009, 52 : 691 - 698
  • [45] Selection of meta-parameters for support vector regression
    Cherkassky, V
    Ma, YQ
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 687 - 693
  • [46] Estimating normal regression parameters on the basis of an extended measurement vector
    Bulychev, Yu G.
    Mozol, A. A.
    Chelakhov, V. M.
    Oplachko, A. A.
    MEASUREMENT TECHNIQUES, 2009, 52 (07) : 691 - 698
  • [47] Detection of Microcalcifications in Mammographies Based on Linear Pixel Prediction and Support-Vector Machines
    Martinez-Alvarez, F.
    Troncoso, A.
    Riquelme, J. C.
    Aguilar-Ruiz, J. S.
    TWENTIETH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2007, : 141 - +
  • [48] Estimating method for lithium ion battery state of charge based on twin support vector regression
    Harbin University of Science and Technology, Harbin, China
    不详
    Int. J. Control Autom., 6 (413-420):
  • [49] Diagnostic System Based on Support-Vector Machines for Board-level Functional Diagnosis
    Zhang, Zhaobo
    Gu, Xinli
    Xie, Yaohui
    Wang, Zhiyuan
    Wang, Zhanglei
    Chakrabarty, Krishnendu
    2012 17TH IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2012,
  • [50] Biosignal Based Discrimination between Slight and Strong Driver Hypovigilance by Support-Vector Machines
    Sommer, David
    Golz, Martin
    Trutschel, Udo
    Edwards, Dave
    AGENTS AND ARTIFICIAL INTELLIGENCE, 2010, 67 : 177 - +