Selection of meta-parameters for support vector regression

被引:0
|
作者
Cherkassky, V [1 ]
Ma, YQ [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose practical recommendations for selecting metaparameters for SVM regression (that is, epsilon-insensitive zone and regularization parameter Q. The proposed methodology advocates analytic parameter selection directly from the training data, rather than resampling approaches commonly used in SVM applications. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low-dimensional and high-dimensional regression problems. In addition, we compare generalization performance of SVM regression (with proposed choiceepsilon) with robust regression using 'least-modulus' loss function (epsilon=0). These comparisons indicate superior generalization performance of SVM regression.
引用
收藏
页码:687 / 693
页数:7
相关论文
共 50 条
  • [1] Determination of Meta-Parameters for Support Vector Machine Linear Combinations
    Jasial, Swarit
    Balfer, Jenny
    Vogt, Martin
    Bajorath, Juergen
    MOLECULAR INFORMATICS, 2015, 34 (2-3) : 127 - 133
  • [2] Parameters selection of support vector regression by genetic algorithms
    Xi'an Univ. of Science and Technology, Xi'an 710054, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2006, 9 (1430-1433):
  • [3] Selection of Support Vector Machines Parameters for Regression Using Nested Grids
    Popov, Alexander
    Sautin, Alexander
    IFOST 2008: PROCEEDING OF THE THIRD INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGIES, 2008, : 329 - 331
  • [4] Global resolution of the support vector machine regression parameters selection problem with LPCC
    Lee, Yu-Ching
    Pang, Jong-Shi
    Mitchell, John E.
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2015, 3 (03) : 197 - 261
  • [5] Particle swarm optimization for parameters selection of twin bounded support vector regression
    College of Electronics and Information Engineering, CIMS Research Center, Tongji University, Shanghai, China
    J. Comput. Inf. Syst., 14 (5163-5170):
  • [6] A kind of economic forecasting model based on support vector regression with parameters selection
    Xu, YT
    Wang, LS
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS 1 AND 2, 2004, : 1623 - 1627
  • [7] System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection
    Zhao, Wei
    Tao, Tao
    Zio, Enrico
    APPLIED SOFT COMPUTING, 2015, 30 : 792 - 802
  • [8] Support vector regression with local ε parameters with the support vectors
    Wang, XX
    Wang, YF
    Brown, D
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 4289 - 4294
  • [9] Training Subset Selection for Support Vector Regression
    Liu, Cenru
    Cen, Jiahao
    PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, : 11 - 14
  • [10] Data selection using support vector regression
    Richman, Michael B.
    Leslie, Lance M.
    Trafalis, Theodore B.
    Mansouri, Hicham
    ADVANCES IN ATMOSPHERIC SCIENCES, 2015, 32 (03) : 277 - 286