Selection of meta-parameters for support vector regression

被引:0
|
作者
Cherkassky, V [1 ]
Ma, YQ [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose practical recommendations for selecting metaparameters for SVM regression (that is, epsilon-insensitive zone and regularization parameter Q. The proposed methodology advocates analytic parameter selection directly from the training data, rather than resampling approaches commonly used in SVM applications. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low-dimensional and high-dimensional regression problems. In addition, we compare generalization performance of SVM regression (with proposed choiceepsilon) with robust regression using 'least-modulus' loss function (epsilon=0). These comparisons indicate superior generalization performance of SVM regression.
引用
收藏
页码:687 / 693
页数:7
相关论文
共 50 条
  • [21] Nonlinear feature selection for support vector quantile regression
    Ye, Ya-Fen
    Wang, Jie
    Chen, Wei-Jie
    NEURAL NETWORKS, 2025, 185
  • [22] Feature Selection Based on Twin Support Vector Regression
    Wu, Qing
    Zhang, Haoyi
    Jing, Rongrong
    Li, Yiran
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2903 - 2907
  • [23] Flexible Kernel Selection in Multitask Support Vector Regression
    Ruiz, Carlos
    Alaiz, Carlos M.
    Catalina, Alejandro
    Dorronsoro, Jose R.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [24] A hyperparameters selection technique for support vector regression models
    Tsirikoglou, P.
    Abraham, S.
    Contino, F.
    Lacor, C.
    Ghorbaniasl, G.
    APPLIED SOFT COMPUTING, 2017, 61 : 139 - 148
  • [25] Evolutionary feature and parameter selection in support vector regression
    Mejia-Guevara, Ivan
    Kuri-Morales, Angel
    MICAI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2007, 4827 : 399 - +
  • [26] On the sensitivity of reactive tabu search to its meta-parameters
    Pellegrini, Paola
    Mascia, Franco
    Stutzle, Thomas
    Birattari, Mauro
    SOFT COMPUTING, 2014, 18 (11) : 2177 - 2190
  • [27] On the sensitivity of reactive tabu search to its meta-parameters
    Paola Pellegrini
    Franco Mascia
    Thomas Stützle
    Mauro Birattari
    Soft Computing, 2014, 18 : 2177 - 2190
  • [28] Bootstrap based pattern selection for Support Vector Regression
    Kim, Dougil
    Cho, Sungzoon
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 608 - 615
  • [29] Selection of tuning parameters for support vector machines
    Solo, V
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 237 - 240
  • [30] Parameters Tuning in Support Vector Regression for Reliability Forecasting
    Zhao, Wei
    Tao, Tao
    Zio, Enrico
    2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 : 523 - 528