Model-Form and Parameter Uncertainty Quantification in Structural Vibration Simulation Using Fractional Derivatives

被引:4
|
作者
Zhang, Baoqiang [1 ,2 ]
Guo, Qintao [3 ]
Wang, Yan [2 ]
Zhan, Ming [3 ]
机构
[1] Xiamen Univ, Sch Aerosp Engn, Xiamen 361005, Peoples R China
[2] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MDOF SYSTEMS; IDENTIFICATION; VARIABILITY; SENSITIVITY; OSCILLATOR; SELECTION; BEHAVIOR;
D O I
10.1115/1.4042689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Extensive research has been devoted to engineering analysis in the presence of only parameter uncertainty. However, in modeling process, model-form uncertainty arises inevitably due to the lack of information and knowledge, as well as assumptions and simplifications made in the models. It is undoubted that model-form uncertainty cannot be ignored. To better quantify model-form uncertainty in vibration systems with multiple degrees-of-freedom, in this paper, fractional derivatives as model-form hypetparameters are introduced. A new general model calibration approach is proposed to separate and reduce model-form and parameter uncertainty based on multiple fractional frequency response functions (FFRFs). The new calibration method is verified through a simulated system with two degrees-of-freedom. The studies demonstrate that the new model-form and parameter uncertainty quantification method is robust.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators
    de Carvalho, Tiago M.
    Heijnsdijk, Eveline A. M.
    Coffeng, Luc
    de Koning, Harry J.
    [J]. MEDICAL DECISION MAKING, 2019, 39 (04) : 405 - 413
  • [32] Uncertainty Quantification Using Parameter Space Partitioning
    Tao, Ye
    Ferranti, Francesco
    Nakhla, Michel S.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (04) : 2110 - 2119
  • [33] Robust Information Divergences for Model-Form Uncertainty Arising from Sparse Data in Random PDE
    Hall, Eric Joseph
    Katsoulakis, Markos A.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1364 - 1394
  • [34] QUANTIFICATION AND PROPAGATION OF MODEL-FORM UNCERTAINTIES IN RANS TURBULENCE MODELING VIA INTRUSIVE POLYNOMIAL CHAOS
    Parekh, J.
    Verstappen, R. W. C. P.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2023, 13 (02) : 1 - 29
  • [35] Model updating based on mixed-integer nonlinear programming under model-form uncertainty in finite element model
    Seung-Seop Jin
    Young-Soo Park
    SungTae Kim
    Young-Hwan Park
    [J]. Engineering with Computers, 2021, 37 : 3699 - 3725
  • [36] Model updating based on mixed-integer nonlinear programming under model-form uncertainty in finite element model
    Jin, Seung-Seop
    Park, Young-Soo
    Kim, SungTae
    Park, Young-Hwan
    [J]. ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 3699 - 3725
  • [37] Choosing a Metamodel of a Simulation Model for Uncertainty Quantification
    de Carvalho, Tiago M.
    van Rosmalen, Joost
    Wolff, Harold B.
    Koffijberg, Hendrik
    Coupe, Veerle M. H.
    [J]. MEDICAL DECISION MAKING, 2022, 42 (01) : 28 - 42
  • [38] Accounting for input model and parameter uncertainty in simulation
    Zouaoui, F
    Wilson, JR
    [J]. WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 290 - 299
  • [39] Parameter estimation and uncertainty quantification using information geometry
    Sharp, Jesse A.
    Browning, Alexander P.
    Burrage, Kevin
    Simpson, Matthew J.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [40] Analysis and numerical simulation of tuberculosis model using different fractional derivatives
    Zafar, Zain Ul Abadin
    Zaib, Sumera
    Hussain, Muhammad Tanveer
    Tunç, Cemil
    Javeed, Shumaila
    [J]. Chaos, Solitons and Fractals, 2022, 160