Model-Form and Parameter Uncertainty Quantification in Structural Vibration Simulation Using Fractional Derivatives

被引:4
|
作者
Zhang, Baoqiang [1 ,2 ]
Guo, Qintao [3 ]
Wang, Yan [2 ]
Zhan, Ming [3 ]
机构
[1] Xiamen Univ, Sch Aerosp Engn, Xiamen 361005, Peoples R China
[2] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
MDOF SYSTEMS; IDENTIFICATION; VARIABILITY; SENSITIVITY; OSCILLATOR; SELECTION; BEHAVIOR;
D O I
10.1115/1.4042689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Extensive research has been devoted to engineering analysis in the presence of only parameter uncertainty. However, in modeling process, model-form uncertainty arises inevitably due to the lack of information and knowledge, as well as assumptions and simplifications made in the models. It is undoubted that model-form uncertainty cannot be ignored. To better quantify model-form uncertainty in vibration systems with multiple degrees-of-freedom, in this paper, fractional derivatives as model-form hypetparameters are introduced. A new general model calibration approach is proposed to separate and reduce model-form and parameter uncertainty based on multiple fractional frequency response functions (FFRFs). The new calibration method is verified through a simulated system with two degrees-of-freedom. The studies demonstrate that the new model-form and parameter uncertainty quantification method is robust.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Model Validation Strategy and Estimation of Response Uncertainty for a Bolted Structure with Model-Form Errors
    Li, Huijie
    Guo, Qintao
    Zhan, Ming
    Tao, Yanhe
    [J]. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2020, : 99 - 105
  • [22] Stochastic symplectic reduced-order modeling for model-form uncertainty quantification in molecular dynamics simulations in various statistical ensembles
    Kounouho, S.
    Dingreville, R.
    Guilleminot, J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 431
  • [23] Applying Uncertainty Quantification to Structural Systems: Parameter Reduction for Evaluating Model Complexity
    Locke, Robert
    Kupis, Shyla
    Gehb, Christopher M.
    Platz, Roland
    Atamturktur, Sez
    [J]. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2020, : 241 - 256
  • [24] Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel
    Wan, Hua-Ping
    Mao, Zhu
    Todd, Michael D.
    Ren, Wei-Xin
    [J]. ENGINEERING STRUCTURES, 2014, 75 : 577 - 589
  • [25] Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multifidelity Approach for Computational Fluid Dynamics Applications
    Wang, Jian-Xun
    Roy, Christopher J.
    Xiao, Heng
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2018, 4 (01):
  • [26] Quantification of model-form uncertainties affecting the calibration of a carbon nitridation model by means of Bayesian Model Averaging
    del Val, Anabel
    Magin, Thierry E.
    Congedo, Pietro M.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 213
  • [27] A case study to quantify prediction bounds caused by model-form uncertainty of a portal frame
    Van Buren, Kendra L.
    Hall, Thomas M.
    Gonzales, Lindsey M.
    Hemez, Francois M.
    Anton, Steven R.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 11 - 26
  • [28] PARAMETER ESTIMATION AND UNCERTAINTY QUANTIFICATION FOR AN EPIDEMIC MODEL
    Capaldi, Alex
    Behrend, Samuel
    Berman, Benjamin
    Smith, Jason
    Wright, Justin
    Lloyd, Alun L.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2012, 9 (03) : 553 - 576
  • [29] A Methodology for the Efficient Quantification of Parameter and Model Uncertainty
    Feldmann, R.
    Gehb, C. M.
    Schaeffner, M.
    Melz, T.
    [J]. JOURNAL OF VERIFICATION, VALIDATION AND UNCERTAINTY QUANTIFICATION, 2022, 7 (03):
  • [30] Model-form uncertainty quantification of Reynolds-averaged Navier-Stokes modeling of flows over a SD7003 airfoil
    Chu, Minghan
    Wu, Xiaohua
    Rival, David E. E.
    [J]. PHYSICS OF FLUIDS, 2022, 34 (11)