Approximate Bayesian Computation for Exponential Random Graph Models for Large Social Networks

被引:11
|
作者
Wang, Jing [1 ]
Atchade, Yves F. [2 ]
机构
[1] Google, Mountain View, CA USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
关键词
Bayesian inference; Exponential random graph model; Intractable normalizing constants; Markov chain Monte Carlo; INTRACTABLE NORMALIZING CONSTANTS;
D O I
10.1080/03610918.2012.703359
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis-Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.
引用
收藏
页码:359 / 377
页数:19
相关论文
共 50 条
  • [41] A Framework for Reconstructing Archaeological Networks Using Exponential Random Graph Models
    Amati, Viviana
    Mol, Angus
    Shafie, Termeh
    Hofman, Corinne
    Brandes, Ulrik
    [J]. JOURNAL OF ARCHAEOLOGICAL METHOD AND THEORY, 2020, 27 (02) : 192 - 219
  • [42] BIRDS OF A FEATHER, OR FRIEND OF A FRIEND? USING EXPONENTIAL RANDOM GRAPH MODELS TO INVESTIGATE ADOLESCENT SOCIAL NETWORKS
    Goodreau, Steven M.
    Kitts, James A.
    Morris, Martina
    [J]. DEMOGRAPHY, 2009, 46 (01) : 103 - 125
  • [43] Using Exponential Random Graph Models for Social Networks to Understand Meta-Communication in Digital Media
    Nie, Zhou
    [J]. SOCIAL SCIENCES-BASEL, 2023, 12 (04):
  • [44] Monitoring the structure of social networks based on exponential random graph model
    Mohebbi, Mahboubeh
    Amiri, Amirhossein
    Taheriyoun, Ali Reza
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (10) : 3742 - 3757
  • [45] Random graph models for temporal processes in social networks
    Robins, G
    Pattison, P
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2001, 25 (01): : 5 - 41
  • [46] Random dot product graph models for social networks
    Young, Stephen J.
    Scheinerman, Edward R.
    [J]. ALGORITHMS AND MODELS FOR THE WEB-GRAPH, 2007, 4863 : 138 - +
  • [47] Marginalized Exponential Random Graph Models
    Suesse, Thomas
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 883 - 900
  • [48] Adaptive approximate Bayesian computation for complex models
    Lenormand, Maxime
    Jabot, Franck
    Deffuant, Guillaume
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2777 - 2796
  • [49] Adaptive approximate Bayesian computation for complex models
    Maxime Lenormand
    Franck Jabot
    Guillaume Deffuant
    [J]. Computational Statistics, 2013, 28 : 2777 - 2796
  • [50] Approximate Bayesian computation for finite mixture models
    Simola, Umberto
    Cisewski-Kehe, Jessi
    Wolpert, Robert L.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (06) : 1155 - 1174