Adaptive approximate Bayesian computation for complex models

被引:0
|
作者
Maxime Lenormand
Franck Jabot
Guillaume Deffuant
机构
[1] LISC,IRSTEA
来源
Computational Statistics | 2013年 / 28卷
关键词
ABC; Population Monte Carlo; Sequential Monte Carlo;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new approximate Bayesian computation (ABC) algorithm that aims at minimizing the number of model runs for reaching a given quality of the posterior approximation. This algorithm automatically determines its sequence of tolerance levels and makes use of an easily interpretable stopping criterion. Moreover, it avoids the problem of particle duplication found when using a MCMC kernel. When applied to a toy example and to a complex social model, our algorithm is 2–8 times faster than the three main sequential ABC algorithms currently available.
引用
收藏
页码:2777 / 2796
页数:19
相关论文
共 50 条
  • [1] Adaptive approximate Bayesian computation for complex models
    Lenormand, Maxime
    Jabot, Franck
    Deffuant, Guillaume
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2777 - 2796
  • [2] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    [J]. BIOMETRIKA, 2009, 96 (04) : 983 - 990
  • [3] Multivariate adaptive regression splines-assisted approximate Bayesian computation for calibration of complex hydrological models
    Ma, Jinfeng
    Li, Ruonan
    Zheng, Hua
    Li, Weifeng
    Rao, Kaifeng
    Yang, Yanzheng
    Wu, Bo
    [J]. JOURNAL OF HYDROINFORMATICS, 2024, 26 (02) : 503 - 518
  • [4] Adaptive Approximate Bayesian Computation Tolerance Selection
    Simola, Umberto
    Cisewski-Kehe, Jessi
    Gutmann, Michael U.
    Corander, Jukka
    [J]. BAYESIAN ANALYSIS, 2021, 16 (02): : 397 - 423
  • [5] Approximate Bayesian computation for finite mixture models
    Simola, Umberto
    Cisewski-Kehe, Jessi
    Wolpert, Robert L.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (06) : 1155 - 1174
  • [6] Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models
    McKinley, Trevelyan J.
    Vernon, Ian
    Andrianakis, Ioannis
    McCreesh, Nicky
    Oakley, Jeremy E.
    Nsubuga, Rebecca N.
    Goldstein, Michael
    White, Richard G.
    [J]. STATISTICAL SCIENCE, 2018, 33 (01) : 4 - 18
  • [7] Integrating Approximate Bayesian Computation with Complex Agent-Based Models for Cancer Research
    Sottoriva, Andrea
    Tavare, Simon
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 57 - 66
  • [8] Inference for SDE Models via Approximate Bayesian Computation
    Picchini, Umberto
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1080 - 1100
  • [9] Approximate Bayesian Computation for a Class of Time Series Models
    Jasra, Ajay
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (03) : 405 - 435
  • [10] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Pierre Del Moral
    Arnaud Doucet
    Ajay Jasra
    [J]. Statistics and Computing, 2012, 22 : 1009 - 1020