Gene expression profiling predicts clinical outcome of breast cancer

被引:7052
|
作者
van't Veer, LJ
Dai, HY
van de Vijver, MJ
He, YDD
Hart, AAM
Mao, M
Peterse, HL
van der Kooy, K
Marton, MJ
Witteveen, AT
Schreiber, GJ
Kerkhoven, RM
Roberts, C
Linsley, PS
Bernards, R
Friend, SH
机构
[1] Rosetta Inpharmat, Kirkland, WA 98034 USA
[2] Netherlands Canc Inst, Div Diagnost Oncol, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Div Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[4] Netherlands Canc Inst, Ctr Biomed Genet, NL-1066 CX Amsterdam, Netherlands
基金
美国国家卫生研究院;
关键词
D O I
10.1038/415530a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour(1-3). Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however 70-80% of patients receiving this treatment would have survived without it(4,5). None of the signatures of breast cancer gene expression reported to date(6-12) allow for patient-tailored therapy strategies. Here we used DNA microarray analysis supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.
引用
收藏
页码:530 / 536
页数:7
相关论文
共 50 条
  • [41] Gene expression profiling for prognosis of breast cancer
    M van de Vijver
    Breast Cancer Research, 9
  • [42] Spatial gene expression profiling in breast cancer
    Spears, Melanie
    Talebian, Vida
    Liao, Linda
    Hopkins, Megan
    Jain, Drashti
    Quintayo, Mary Anne
    Bayani, Jane
    Cheung, Alison
    Yaffe, Martin
    Bartlett, John M.
    CANCER RESEARCH, 2021, 81 (13)
  • [43] Gene-expression profiling in breast cancer
    Jenssen, TK
    Hovig, E
    LANCET, 2005, 365 (9460): : 634 - 635
  • [44] Gene Expression Profiling of Inflammatory Breast Cancer
    Bertucci, Francois
    Finetti, Pascal
    Birnbaum, Daniel
    Viens, Patrice
    CANCER, 2010, 116 (11) : 2783 - 2793
  • [45] Gene expression profiling of calcifications in breast cancer
    Sung Ui Shin
    Jeonghoon Lee
    Ju Han Kim
    Won Hwa Kim
    Sung Eun Song
    Ajung Chu
    Hoe Suk Kim
    Wonshik Han
    Han Suk Ryu
    Woo Kyung Moon
    Scientific Reports, 7
  • [46] Gene expression profiling for prognosis of breast cancer
    van de Vijver, M.
    BREAST CANCER RESEARCH, 2007, 9 (01)
  • [47] Gene expression profiling: Decoding breast cancer
    de Snoo, Femke
    Bender, Richard
    Glas, Annuska
    Rutgers, Emiel
    SURGICAL ONCOLOGY-OXFORD, 2009, 18 (04): : 366 - 378
  • [48] Gene expression profiling of primary breast cancer
    Rouzier R.
    Wagner P.
    Morandi P.
    Pusztai L.
    Current Oncology Reports, 2005, 7 (1) : 38 - 44
  • [49] Gene expression profiling in male breast cancer
    Dubrovsky, Esther
    Raymond, Samantha
    Chun, Jennifer
    Schnabel, Freya
    CANCER RESEARCH, 2018, 78 (04)
  • [50] Gene expression profiling of calcifications in breast cancer
    Shin, Sung Ui
    Lee, Jeonghoon
    Kim, Ju Han
    Kim, Won Hwa
    Song, Sung Eun
    Chu, Ajung
    Kim, Hoe Suk
    Han, Wonshik
    Ryu, Han Suk
    Moon, Woo Kyung
    SCIENTIFIC REPORTS, 2017, 7