Modulo 2n-1 multiplication/sum-of-squares units

被引:0
|
作者
Adamidis, D
Vergos, HT
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several applications profit from the use of a Residue Number System (RNS). Moduli of the 2(n) - 1 form are among the most commonly used in such systems in which the multiplication and sum-of-squares operations are commonly met. These operations are currently performed using distinct design units and consecutive machine cycles. In this paper, we propose two architectures for modulo 2(n) - 1 units that perform either the X x Y or X-2 + Y-2 operation depending on the value of a control signal.
引用
收藏
页码:II143 / II146
页数:4
相关论文
共 50 条
  • [1] Combined multiplication and sum-of-squares units
    Schulte, MJ
    Marquette, L
    Krithivasan, S
    Walters, EG
    Glossner, J
    IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES, AND PROCESSORS, PROCEEDINGS, 2003, : 204 - 214
  • [2] Hard Multiple Generator for Higher Radix Modulo 2n-1 Multiplication
    Muralidharan, Ramya
    Chang, Chip-Hong
    PROCEEDINGS OF THE 2009 12TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC 2009), 2009, : 121 - 124
  • [3] A subword-parallel multiplication and sum-of-squares unit
    Krithivasan, S
    Schulte, MJ
    Glossner, J
    VLSI 2004: IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, PROCEEDINGS, 2004, : 273 - 274
  • [4] Design of Optimized Reversible Squaring and Sum-of-Squares Units
    A. N. Nagamani
    Chirag Ramesh
    Vinod Kumar Agrawal
    Circuits, Systems, and Signal Processing, 2018, 37 : 1753 - 1776
  • [5] Design of Optimized Reversible Squaring and Sum-of-Squares Units
    Nagamani, A. N.
    Ramesh, Chirag
    Agrawal, Vinod Kumar
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (04) : 1753 - 1776
  • [6] On the addition of squares of units modulo n
    Mollahajiaghaei, Mohsen
    JOURNAL OF NUMBER THEORY, 2017, 170 : 35 - 45
  • [7] EFFICIENT ARCHITECTURES FOR MODULO 2n-1 SQUARERS
    Spyrou, A.
    Bakalis, D.
    Vergos, H. T.
    2009 16TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 687 - +
  • [8] Modified Booth modulo 2n-1 multipliers
    Efstathiou, C
    Vergos, HT
    Nikolos, D
    IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (03) : 370 - 374
  • [9] Linear Approximations of Addition Modulo 2n-1
    Zhou, Chunfang
    Feng, Xiutao
    Wu, Chuankun
    FAST SOFTWARE ENCRYPTION (FSE 2011), 2011, 6733 : 359 - 377
  • [10] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274