Fractional Brownian sheep

被引:0
|
作者
Ayache, A
Leger, S
Pontier, M
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, CNRS, UMR C 5583, F-31062 Toulouse, France
[2] Univ Orleans, CNRS, URA 1803, F-45067 Orleans 02, France
关键词
Gaussian random fields; anisotropic fields; sample path regularity;
D O I
10.1023/A:1015260803576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A random field depending on two parameters alpha and beta is defined by a fractional integration with respect to the white noise field. Such a process is autosimilar with stationary rectangular increments. The paths have some regular properties, and the process has a sort of regularity with respect of the parameters. The process has the same law as that of Anna Kamont. However, our definition allows to prove some others properties, particularly paths properties, and gives easily simulation algorithms of such of fields.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [41] Fractional Randomness and the Brownian Bridge
    Tapiero, Charles S.
    Vallois, Pierre
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 835 - 843
  • [42] On the Generalized Fractional Brownian Motion
    Zili M.
    Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [43] FRACTIONAL BROWNIAN VECTOR FIELDS
    Tafti, Pouya Dehghani
    Unser, Michael
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1645 - 1670
  • [44] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [45] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [46] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [47] Dimensions of Fractional Brownian Images
    Burrell, Stuart A.
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2217 - 2238
  • [48] Mixed fractional Brownian motion
    Cheridito, P
    BERNOULLI, 2001, 7 (06) : 913 - 934
  • [49] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [50] Comparison of scattering from fractional Brownian motion and asymptotic fractional Brownian motion rough surfaces
    Zhang, YD
    Wu, ZS
    2003 6TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, PROCEEDINGS, 2003, : 496 - 499