Fractional Brownian sheep

被引:0
|
作者
Ayache, A
Leger, S
Pontier, M
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, CNRS, UMR C 5583, F-31062 Toulouse, France
[2] Univ Orleans, CNRS, URA 1803, F-45067 Orleans 02, France
关键词
Gaussian random fields; anisotropic fields; sample path regularity;
D O I
10.1023/A:1015260803576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A random field depending on two parameters alpha and beta is defined by a fractional integration with respect to the white noise field. Such a process is autosimilar with stationary rectangular increments. The paths have some regular properties, and the process has a sort of regularity with respect of the parameters. The process has the same law as that of Anna Kamont. However, our definition allows to prove some others properties, particularly paths properties, and gives easily simulation algorithms of such of fields.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 50 条
  • [21] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [22] On the maximum of a fractional Brownian motion
    Molchan, GM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (01) : 97 - 102
  • [23] LACUNARY FRACTIONAL BROWNIAN MOTION
    Clausel, Marianne
    ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 352 - 374
  • [24] Dimensions of Fractional Brownian Images
    Stuart A. Burrell
    Journal of Theoretical Probability, 2022, 35 : 2217 - 2238
  • [25] Fractional Brownian dynamics in proteins
    Kneller, GR
    Hinsen, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (20): : 10278 - 10283
  • [26] Are Fractional Brownian Motions Predictable?
    Jakubowski, Adam
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 159 - 165
  • [27] On squared fractional Brownian motions
    Eisenbaum, N
    Tudor, CA
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 282 - 289
  • [28] Horizons of fractional Brownian surfaces
    Falconer, KJ
    Véhel, JL
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2153 - 2178
  • [29] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [30] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501