Braids;
virtual braids;
representations by automorphisms;
ALEXANDER GROUPS;
INVARIANTS;
LINKS;
D O I:
10.1142/S0218216517500031
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In the present paper, a new representation of the virtual braid group VBn into the automorphism group of free product of the free group and free abelian group is constructed. This representation generalizes the previously constructed ones. The fact that the previously known representations are not faithful for n >= 4 is verified. Using representations of VBn, a virtual link group is defined. Also representations of the welded braid group WBn are constructed and the welded link group is defined.
机构:
Bauman State Tech Univ, Vtoraya Baumanskaya Ul 5, Moscow 107005, Russia
Chelyabinsk State Univ, Ul Bratev Kashirinykh 129, Chelyabinsk 454021, RussiaBauman State Tech Univ, Vtoraya Baumanskaya Ul 5, Moscow 107005, Russia
机构:
Novosibirsk State Univ, Pirogova 1, Novosibirsk 630090, Russia
Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, RussiaNovosibirsk State Univ, Pirogova 1, Novosibirsk 630090, Russia
Bardakov, Valeriy
Emel'yanenkov, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Pirogova 1, Novosibirsk 630090, RussiaNovosibirsk State Univ, Pirogova 1, Novosibirsk 630090, Russia
机构:
Univ Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, FranceUniv Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, F-21004 Dijon, France