Braids;
virtual braids;
representations by automorphisms;
ALEXANDER GROUPS;
INVARIANTS;
LINKS;
D O I:
10.1142/S0218216517500031
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In the present paper, a new representation of the virtual braid group VBn into the automorphism group of free product of the free group and free abelian group is constructed. This representation generalizes the previously constructed ones. The fact that the previously known representations are not faithful for n >= 4 is verified. Using representations of VBn, a virtual link group is defined. Also representations of the welded braid group WBn are constructed and the welded link group is defined.
机构:
Tomsk State Univ, Tomsk, Russia
Novosibirsk State Univ, Novosibirsk, Russia
Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk, RussiaTomsk State Univ, Tomsk, Russia
Egorov, Andrey A.
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS,
2024,
(91):
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, Russia
Novosibirsk State Agr Univ, Dobrolyubova St 160, Novosibirsk 630039, Russia
Tomsk State Univ, Reg Sci & Educ Math Ctr, 36 Lenin Ave, Tomsk, RussiaSobolev Inst Math, Novosibirsk 630090, Russia
Bardakov, Valeriy G.
Nanda, Neha
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci Educ & Res IISER Mohali, Dept Math Sci, Sect 81,PO Manauli, Sas Nagar 140306, Punjab, IndiaSobolev Inst Math, Novosibirsk 630090, Russia
Nanda, Neha
Neshchadim, Mikhail V.
论文数: 0引用数: 0
h-index: 0
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, Russia
Tomsk State Univ, Reg Sci & Educ Math Ctr, 36 Lenin Ave, Tomsk, RussiaSobolev Inst Math, Novosibirsk 630090, Russia