In this paper, we prove a quantitative version of the statement that every nonempty finite subset of N+ is a set of quadratic residues for infinitely many primes of the form [n(c)] with 1 <= c <= 243/205. Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.
机构:
Univ Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USA
Basak, Debmalya
Nath, Kunjakanan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USA
Nath, Kunjakanan
Zaharescu, Alexandru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USA
Romanian Acad, Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Illinois, Dept Math, Altgeld Hall,1409 W Green St, Urbana, IL 61801 USA