Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes

被引:1
|
作者
Xi, Ping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic residue; quadratic non-residue; Piatetski-Shapiro prime; NUMBERS;
D O I
10.1007/s10114-012-1227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a quantitative version of the statement that every nonempty finite subset of N+ is a set of quadratic residues for infinitely many primes of the form [n(c)] with 1 <= c <= 243/205. Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 50 条
  • [21] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770
  • [22] AN ADDITIVE PROBLEM INVOLVING PIATETSKI-SHAPIRO PRIMES
    Wang, Xinna
    Cai, Yingchun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) : 1359 - 1378
  • [23] Roth's theorem in the Piatetski-Shapiro primes
    Mirek, Mariusz
    REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (02) : 617 - 656
  • [24] SMALL GAPS BETWEEN THE PIATETSKI-SHAPIRO PRIMES
    Li, Hongze
    Pan, Hao
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8463 - 8484
  • [25] An Additive Problem with Piatetski-Shapiro Primes and Almost-Primes
    T. P. Peneva
    Monatshefte für Mathematik, 2003, 140 : 119 - 133
  • [26] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770
  • [27] Almost primes in generalized Piatetski-Shapiro sequences
    Qi, Jinyun
    Xu, Zhefeng
    AIMS MATHEMATICS, 2022, 7 (08): : 14154 - 14162
  • [28] Diophantine approximation over Piatetski-Shapiro primes
    Li, Taiyu
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2020, 211 : 184 - 198
  • [29] Quadratic Residues and Non-Residues in Arithmetic Progression
    Wright, Steve
    QUADRATIC RESIDUES AND NON-RESIDUES: SELECTED TOPICS, 2016, 2171 : 227 - 271
  • [30] Quadratic residues and non-residues in arithmetic progression
    Wright, Steve
    JOURNAL OF NUMBER THEORY, 2013, 133 (07) : 2398 - 2430