QUANTUM DIRAC FIELD ON MOYAL-MINKOWSKI SPACETIME - ILLUSTRATING QUANTUM FIELD THEORY OVER LORENTZIAN SPECTRAL GEOMETRY

被引:10
|
作者
Verch, Rainer [1 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
来源
GEOMETRY AND PHYSICS IN CRACOW | 2011年 / 4卷 / 03期
关键词
RENORMALIZATION; GRAVITY;
D O I
10.5506/APhysPolBSupp.4.507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sketch of an approach towards Lorentzian spectral geometry (based on joint work with Mario Paschke) is described, together with a general way to define abstractly the quantized Dirac field on such Lorentzian spectral geometries. Moyal-Minkowski spacetime serves as an example. The scattering of the quantized Dirac field by a non-commutative (Moyal-deformed) action of an external scalar potential is investigated. It is shown that differentiating the S-matrix with respect to the strength of the scattering potential gives rise to quantum field operators depending on elements of the non-commutative algebra entering the spectral geometry description of Moyal-Minkowski spacetime, in the spirit of "Bogoliubov's formula", in analogy to the situation found in external potential scattering by a usual scalar potential.
引用
收藏
页码:507 / 527
页数:21
相关论文
共 50 条
  • [41] Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory
    Sakellaridaou, Mairi
    Stabile, Antonio
    Vitiello, Giuseppe
    6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [42] Perturbative Algebraic Quantum Field Theory on Quantum Spacetime: Adiabatic and Ultraviolet Convergence
    Sergio Doplicher
    Gerardo Morsella
    Nicola Pinamonti
    Communications in Mathematical Physics, 2020, 379 : 1035 - 1076
  • [43] Perturbative Algebraic Quantum Field Theory on Quantum Spacetime: Adiabatic and Ultraviolet Convergence
    Doplicher, Sergio
    Morsella, Gerardo
    Pinamonti, Nicola
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (03) : 1035 - 1076
  • [44] Dirac's hole theory versus quantum field theory
    Coutinho, FAB
    Kiang, D
    Nogami, Y
    Tomio, L
    CANADIAN JOURNAL OF PHYSICS, 2002, 80 (08) : 837 - 845
  • [45] DIFFERENTIAL GEOMETRY FROM QUANTUM FIELD THEORY
    Chen, W. F.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (04)
  • [46] Quantum κ-deformed differential geometry and field theory
    Mercati, Flavio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (05):
  • [47] Finite quantum field theory in noncommutative geometry
    Grosse, H
    Klimcik, C
    Presnajder, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 231 - 244
  • [48] QUANTUM GEOMETRY OF A CONFORMAL FIELD-THEORY
    SANIELEVICI, MN
    SEMENOFF, GW
    PHYSICS LETTERS B, 1987, 198 (02) : 209 - 214
  • [49] On nonperturbative quantum field theory and noncommutative geometry
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 145
  • [50] Quantum Field Theory over Fq
    Schnetz, Oliver
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):