DIFFERENTIAL GEOMETRY FROM QUANTUM FIELD THEORY

被引:2
|
作者
Chen, W. F. [1 ]
机构
[1] Nipissing Univ, Dept Math, North Bay, ON P1B 8L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Instanton moduli space; fiber bundle; gauge field; chiral anomaly; supersymmetry; descendant equations; electric-magnetic duality; ATIYAH-SINGER INDEX; GAUGE-THEORIES; MAGNETIC MONOPOLES; CONFORMAL PROPERTIES; SUPERSYMMETRY; COHOMOLOGY; ANOMALIES; CONSTRUCTION; 3-COCYCLE; STABILITY;
D O I
10.1142/S0219887813500035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the historical development and physical ideas of topological Yang-Mills theory and explain how quantum field theory, a physical framework describing subatomic physics, can be used as a tool to study differential geometry. We further emphasize that this phenomenon demonstrates that the inter-relation between theoretical physics and mathematics have come into a new stage.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Quantum κ-deformed differential geometry and field theory
    Mercati, Flavio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (05):
  • [2] Supersymmetric Quantum Theory and Differential Geometry
    J. Fröhlich
    O. Grandjean
    A. Recknagel
    Communications in Mathematical Physics, 1998, 193 : 527 - 594
  • [3] Supersymmetric quantum theory and differential geometry
    Frohlich, J
    Grandjean, O
    Recknagel, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (03) : 527 - 594
  • [4] From quantum gravity to quantum field theory via noncommutative geometry
    Aastrup, Johannes
    Grimstrup, Jesper Moller
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (03)
  • [5] GEOMETRY OF DIFFERENTIAL-EQUATIONS, SECONDARY DIFFERENTIAL-CALCULUS AND THE QUANTUM-FIELD THEORY
    VINOGRADOV, AM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, (01): : 13 - 21
  • [6] ANOMALIES IN QUANTUM-FIELD THEORY - DISPERSION-RELATIONS AND DIFFERENTIAL GEOMETRY
    BERTLMANN, RA
    NUCLEAR PHYSICS B, 1995, : 482 - 487
  • [7] SNYDER GEOMETRY AND QUANTUM FIELD THEORY
    Valtancoli, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (31):
  • [8] Noncommutative geometry and quantum field theory
    Kulish, PP
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 213 - 221
  • [9] On the Geometry of Singularities in Quantum Field Theory
    Wendland, Katrin
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 2144 - 2170
  • [10] From stochastic differential equation to quantum field theory
    Gielerak, R
    Lugiewicz, P
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 101 - 110