Identification of Lantana Camara Distribution Using Convolutional Neural Networks

被引:0
|
作者
Samarajeewa, Tharushi [1 ]
Suduwella, Chathura [1 ]
Jayasuriya, Namal [1 ]
Kumarasinghe, Prabhash [1 ]
Gunawardana, Kasun [1 ]
De Zoysa, Kasun [1 ]
Keppitiyagama, Chamath [1 ]
机构
[1] Univ Colombo, Sch Comp, 35 Reid Ave, Colombo 00700, Sri Lanka
关键词
Convolutional Neural Network; Lantana camera; plant identification; weed classification;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lantana camera is an exotic invasive plant that has been a major threat to the biodiversity of several areas around the world. This paper presents a novel methodology to identify the distribution of Lantana camera flowers in aerial images. The proposed model uses aerial images as inputs and the model consist of three stages. The first step is the detection of possible flower patches in the aerial images using Local Binary Patterns mechanism. The second step is the recognition of Lantana camera flowers from the localized flower patches through a classification process using a Convolutional Neural Network (CNN). The third step is the marking the presence of the flowers of Lantana camera in the original image. Achieved sensitivity rate of this study is 40.71%. The proposed model succeeded in identifying Lantana camara distribution by identifying the presence of Lantana camara flowers in aerial images.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 50 条
  • [21] HPLC IDENTIFICATION OF ALLELOPATHIC COMPOUNDS FROM LANTANA-CAMARA
    SINGH, M
    TAMMA, RV
    NIGG, HN
    [J]. JOURNAL OF CHEMICAL ECOLOGY, 1989, 15 (01) : 81 - 89
  • [22] Wireless Channel Scenario Identification Using Convolutional Neural Networks
    Gopal, Govind R.
    Chen, Jie
    Hillery, William J.
    Tan, Jun
    Ozen, Serdar
    Zhu, Qiping
    [J]. 2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [23] Wireless Technology Identification Using Deep Convolutional Neural Networks
    Bitar, Naim
    Muhammad, Siraj
    Refai, Hazem H.
    [J]. 2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,
  • [24] Identification of Epileptic EEG Signals Using Convolutional Neural Networks
    Abiyev, Rahib
    Arslan, Murat
    Idoko, John Bush
    Sekeroglu, Boran
    Ilhan, Ahmet
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [25] Identification of crop diseases using improved convolutional neural networks
    Wang, Long
    Sun, Jun
    Wu, Xiaohong
    Shen, Jifeng
    Lu, Bing
    Tan, Wenjun
    [J]. IET COMPUTER VISION, 2020, 14 (07) : 538 - 545
  • [26] MATERIAL IDENTIFICATION USING RF SENSORS AND CONVOLUTIONAL NEURAL NETWORKS
    Agresti, Gianluca
    Milani, Simone
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3662 - 3666
  • [27] Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
    Petr Nejedly
    Jan Cimbalnik
    Petr Klimes
    Filip Plesinger
    Josef Halamek
    Vaclav Kremen
    Ivo Viscor
    Benjamin H. Brinkmann
    Martin Pail
    Milan Brazdil
    Gregory Worrell
    Pavel Jurak
    [J]. Neuroinformatics, 2019, 17 : 225 - 234
  • [28] Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
    Nejedly, Petr
    Cimbalnik, Jan
    Klimes, Petr
    Plesinger, Filip
    Halamek, Josef
    Kremen, Vaclav
    Viscor, Ivo
    Brinkmann, Benjamin H.
    Pail, Martin
    Brazdil, Milan
    Worrell, Gregory
    Jurak, Pavel
    [J]. NEUROINFORMATICS, 2019, 17 (02) : 225 - 234
  • [29] Person Identification by Footstep Sound Using Convolutional Neural Networks
    Algermissen, Stephan
    Hoernlein, Max
    [J]. APPLIED MECHANICS, 2021, 2 (02): : 257 - 273
  • [30] Ant genera identification using an ensemble of convolutional neural networks
    Marques, Alan Caio R.
    Raimundo, Marcos M.
    Cavalheiro, Ellen Marianne B.
    Salles, Luis F. P.
    Lyra, Christiano
    Von Zuben, Fernando J.
    [J]. PLOS ONE, 2018, 13 (01):