Intracerebral EEG Artifact Identification Using Convolutional Neural Networks

被引:52
|
作者
Nejedly, Petr [1 ,2 ,3 ]
Cimbalnik, Jan [1 ]
Klimes, Petr [1 ,2 ]
Plesinger, Filip [2 ]
Halamek, Josef [2 ]
Kremen, Vaclav [3 ,7 ]
Viscor, Ivo [2 ]
Brinkmann, Benjamin H. [3 ,7 ]
Pail, Martin [4 ,5 ]
Brazdil, Milan [4 ,5 ,6 ]
Worrell, Gregory [3 ,7 ]
Jurak, Pavel [2 ]
机构
[1] St Annes Univ Hosp, Int Clin Res Ctr, Brno, Czech Republic
[2] Czech Acad Sci, Inst Sci Instruments, Brno, Czech Republic
[3] Mayo Clin, Dept Neurol, Mayo Syst Electrophysiol Lab, Rochester, MN 55905 USA
[4] Masaryk Univ, St Annes Univ Hosp, Dept Neurol, Brno Epilepsy Ctr, Brno, Czech Republic
[5] Masaryk Univ, Med Fac, Brno, Czech Republic
[6] Masaryk Univ, CEITEC Cent European Inst Technol, Brno, Czech Republic
[7] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN USA
基金
美国国家卫生研究院;
关键词
Intracranial EEG (iEEG); Noise detection; Convolutional neural networks (CNN); Artifact probability matrix (APM); AUTOMATIC IDENTIFICATION; REAL-TIME; REMOVAL; SIGNAL;
D O I
10.1007/s12021-018-9397-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Manual and semi-automatic identification of artifacts and unwanted physiological signals in large intracerebral electroencephalographic (iEEG) recordings is time consuming and inaccurate. To date, unsupervised methods to accurately detect iEEG artifacts are not available. This study introduces a novel machine-learning approach for detection of artifacts in iEEG signals in clinically controlled conditions using convolutional neural networks (CNN) and benchmarks the method's performance against expert annotations. The method was trained and tested on data obtained from St Anne's University Hospital (Brno, Czech Republic) and validated on data from Mayo Clinic (Rochester, Minnesota, U.S.A). We show that the proposed technique can be used as a generalized model for iEEG artifact detection. Moreover, a transfer learning process might be used for retraining of the generalized version to form a data-specific model. The generalized model can be efficiently retrained for use with different EEG acquisition systems and noise environments. The generalized and specialized model F1 scores on the testing dataset were 0.81 and 0.96, respectively. The CNN model provides faster, more objective, and more reproducible iEEG artifact detection compared to manual approaches.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [1] Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
    Petr Nejedly
    Jan Cimbalnik
    Petr Klimes
    Filip Plesinger
    Josef Halamek
    Vaclav Kremen
    Ivo Viscor
    Benjamin H. Brinkmann
    Martin Pail
    Milan Brazdil
    Gregory Worrell
    Pavel Jurak
    [J]. Neuroinformatics, 2019, 17 : 225 - 234
  • [2] A Flexible Multichannel EEG Artifact Identification Processor using Depthwise-Separable Convolutional Neural Networks
    Khatwani, Mohit
    Hasib-Al Rashid
    Paneliya, Hirenkumar
    Horton, Mark
    Waytowich, Nicholas
    Hairston, W. David
    Mohsenin, Tinoosh
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2021, 17 (02)
  • [3] Energy Efficient Convolutional Neural Networks for EEG Artifact Detection
    Khatwani, Mohit
    Hosseini, M.
    Paneliya, H.
    Hairston, W. David
    Waytowich, Nicholas
    Mohsenin, Tinoosh
    [J]. 2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 499 - 502
  • [4] Identification of Epileptic EEG Signals Using Convolutional Neural Networks
    Abiyev, Rahib
    Arslan, Murat
    Idoko, John Bush
    Sekeroglu, Boran
    Ilhan, Ahmet
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [5] Classification of EEG signal using convolutional neural networks
    Wang, Jianhua
    Yu, Gaojie
    Zhong, Liu
    Chen, Weihai
    Sun, Yu
    [J]. PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1694 - 1698
  • [6] Pianist Identification Using Convolutional Neural Networks
    Tang, Jingjing
    Wiggins, Geraint
    Fazekas, Gyorgy
    [J]. 2023 4TH INTERNATIONAL SYMPOSIUM ON THE INTERNET OF SOUNDS, 2023, : 191 - 196
  • [7] Microphone Identification Using Convolutional Neural Networks
    Baldini, Gianmarco
    Amerini, Irene
    Gentile, Claudio
    [J]. IEEE SENSORS LETTERS, 2019, 3 (07)
  • [8] Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
    Lopes, Fabio
    Leal, Adriana
    Medeiros, Julio
    Pinto, Mauro F.
    Dourado, Antonio
    Duempelmann, Matthias
    Teixeira, Cesar
    [J]. IEEE ACCESS, 2021, 9 : 149955 - 149970
  • [9] Resting State EEG-Based Biometrics for Individual Identification Using Convolutional Neural Networks
    Ma, Lan
    Minett, James W.
    Blu, Thierry
    Wang, William S-Y.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2848 - 2851
  • [10] Robust Approach Based on Convolutional Neural Networks for Identification of Focal EEG Signals
    Bajaj, Varun
    Taran, Sachin
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    [J]. IEEE SENSORS LETTERS, 2019, 3 (05)