The structure of delta-matroids with width one twists

被引:0
|
作者
Chun, Carolyn [1 ]
Hall, Rhiannon [2 ]
Merino, Criel [3 ]
Moffatt, Iain [4 ]
Noble, Steven D. [5 ]
机构
[1] US Naval Acad, Annapolis, MD 21402 USA
[2] Brunel Univ, Dept Math, Uxbridge UB8 3PH, Middx, England
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad De Mexico 04510, Mexico
[4] Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, England
[5] Birkbeck Univ London, Dept Econ Math & Stat, Malet St, London WC1E 7HX, England
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 01期
关键词
delta-matroid; excluded minor; matroid; partial dual; twist; width; SYMMETRICAL MATROIDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The width of a delta-matroid is the difference in size between a maximal and minimal feasible set. We give a Rough Structure Theorem for delta-matroids that admit a twist of width one. We apply this theorem to give an excluded-minor characterisation of delta-matroids that admit a twist of width at most one.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The Interlace Polynomial of Binary Delta-Matroids and Link Invariants
    Nadezhda Kodaneva
    Functional Analysis and Its Applications, 2025, 59 (1) : 19 - 31
  • [42] The class of delta-matroids closed under handle slides
    Avohou, Remi Cocou
    DISCRETE MATHEMATICS, 2021, 344 (04)
  • [43] DELTA-MATROIDS, JUMP SYSTEMS, AND BISUBMODULAR POLYHEDRA
    BOUCHET, A
    CUNNINGHAM, WH
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (01) : 17 - 32
  • [44] Representative set statements for delta-matroids and the Mader delta-matroid
    Wahlstroem, Magnus
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 780 - 810
  • [45] Even Delta-Matroids and the Complexity of Planar Boolean CSPs
    Kazda, Alexandr
    Kolmogorov, Vladimir
    Rolinek, Michal
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 307 - 326
  • [46] Even Delta-Matroids and the Complexity of Planar Boolean CSPs
    Kazda, Alexandr
    Kolmogorov, Vladimir
    Rolinek, Michal
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (02)
  • [47] K-CLASSES OF DELTA-MATROIDS AND EQUIVARIANT LOCALIZATION
    Eur, Christopher
    Larson, Matt
    Spink, Hunter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (01) : 731 - 750
  • [48] TRANSITION POLYNOMIAL AS A WEIGHT SYSTEM FOR BINARY DELTA-MATROIDS
    Dunaykin, Alexander
    Zhukov, Vyacheslav
    MOSCOW MATHEMATICAL JOURNAL, 2022, 22 (01) : 69 - 81
  • [49] A GREEDY-ALGORITHM CHARACTERIZATION OF VALUATED DELTA-MATROIDS
    DRESS, AWM
    WENZEL, W
    APPLIED MATHEMATICS LETTERS, 1991, 4 (06) : 55 - 58
  • [50] Lagrangian Subspaces, Delta-Matroids, and Four-Term Relations
    Zhukov, V. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (02) : 93 - 100