Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds

被引:28
|
作者
Zheng, Chaoda [1 ,2 ,3 ]
Yan, Xu [1 ,2 ,3 ]
Zhang, Haiming [1 ,2 ,3 ]
Wang, Baoyuan [4 ]
Cheng, Shenghui [5 ]
Cui, Shuguang [1 ,2 ,3 ]
Li, Zhen [1 ,2 ,3 ]
机构
[1] Chinese Univ Hong Kong Shenzhen, Shenzhen, Peoples R China
[2] Future Network Intelligence Inst, Shenzhen, Peoples R China
[3] Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[4] Xiaobing AI, Beijing, Peoples R China
[5] Westlake Univ, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D single object tracking (3D SOT) in LiDAR point clouds plays a crucial role in autonomous driving. Current approaches all follow the Siamese paradigm based on appearance matching. However, LiDAR point clouds are usually textureless and incomplete, which hinders effective appearance matching. Besides, previous methods greatly overlook the critical motion clues among targets. In this work, beyond 3D Siamese tracking, we introduce a motion-centric paradigm to handle 3D SOT from a new perspective. Following this paradigm, we propose a matching free two-stage tracker M-2-Track. At the 1st-stage, M-2-Track localizes the target within successive frames via motion transformation. Then it refines the target box through motion-assisted shape completion at the 2nd-stage. Extensive experiments confirm that M-2-Track significantly outperforms previous state-of-the-arts on three large-scale datasets while running at 57FPS (similar to 8%, similar to 17% and similar to 22% precision gains on KITTI, NuScenes, and Waymo Open Dataset respectively). Further analysis verifies each component's effectiveness and shows the motioncentric paradigm's promising potential when combined with appearance matching.
引用
收藏
页码:8101 / 8110
页数:10
相关论文
共 50 条
  • [31] 3D Object Tracking for Rough Models
    Song, Xiuqiang
    Xie, Weijian
    Li, Jiachen
    Wang, Nan
    Zhong, Fan
    Zhang, Guofeng
    Qin, Xueying
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [32] Robust statistics for 3D object tracking
    Preisig, Peter
    Kragic, Danica
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 2403 - +
  • [33] A Framework for 3D Object Identification and Tracking
    Chliveros, Georgios
    Figueiredo, Rui P.
    Moreno, Plinio
    Pateraki, Maria
    Bernardino, Alexandre
    Santos-Victor, Jose
    Trahanias, Panos
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 672 - 677
  • [34] GLT-T: Global-Local Transformer Voting for 3D Single Object Tracking in Point Clouds
    Nie, Jiahao
    He, Zhiwei
    Yang, Yuxiang
    Gao, Mingyu
    Zhang, Jing
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1957 - 1965
  • [35] Multi-Level Structure-Enhanced Network for 3D Single Object Tracking in Sparse Point Clouds
    Wu, Qiaoyun
    Sun, Changyin
    Wang, Jun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 9 - 16
  • [36] Robust 3D Object Tracking Using an Elaborate Motion Model
    Seo, Byung-Kuk
    Wuest, Harald
    ADJUNCT PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT), 2016, : 70 - 71
  • [37] Stereo and Motion Based 3D High Density Object Tracking
    Tao, Junli
    Risse, Benjamin
    Jiang, Xiaoyi
    IMAGE AND VIDEO TECHNOLOGY, PSIVT 2013, 2014, 8333 : 136 - 148
  • [38] TM2B: Transformer-Based Motion-to-Box Network for 3D Single Object Tracking on Point Clouds
    Xu, Anqi
    Nie, Jiahao
    He, Zhiwei
    Lv, Xudong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7078 - 7085
  • [39] Probabilistic 3D motion model for object tracking in aerial applications
    Mirtajadini, Seyed Hojat
    Atashgah, MohammadAli Amiri
    Shahbazi, Mohammad
    IET IMAGE PROCESSING, 2024, 18 (08) : 2011 - 2027
  • [40] P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
    Qi, Haozhe
    Feng, Chen
    Cao, Zhiguo
    Zhao, Feng
    Xiao, Yang
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6328 - 6337