Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds

被引:28
|
作者
Zheng, Chaoda [1 ,2 ,3 ]
Yan, Xu [1 ,2 ,3 ]
Zhang, Haiming [1 ,2 ,3 ]
Wang, Baoyuan [4 ]
Cheng, Shenghui [5 ]
Cui, Shuguang [1 ,2 ,3 ]
Li, Zhen [1 ,2 ,3 ]
机构
[1] Chinese Univ Hong Kong Shenzhen, Shenzhen, Peoples R China
[2] Future Network Intelligence Inst, Shenzhen, Peoples R China
[3] Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[4] Xiaobing AI, Beijing, Peoples R China
[5] Westlake Univ, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D single object tracking (3D SOT) in LiDAR point clouds plays a crucial role in autonomous driving. Current approaches all follow the Siamese paradigm based on appearance matching. However, LiDAR point clouds are usually textureless and incomplete, which hinders effective appearance matching. Besides, previous methods greatly overlook the critical motion clues among targets. In this work, beyond 3D Siamese tracking, we introduce a motion-centric paradigm to handle 3D SOT from a new perspective. Following this paradigm, we propose a matching free two-stage tracker M-2-Track. At the 1st-stage, M-2-Track localizes the target within successive frames via motion transformation. Then it refines the target box through motion-assisted shape completion at the 2nd-stage. Extensive experiments confirm that M-2-Track significantly outperforms previous state-of-the-arts on three large-scale datasets while running at 57FPS (similar to 8%, similar to 17% and similar to 22% precision gains on KITTI, NuScenes, and Waymo Open Dataset respectively). Further analysis verifies each component's effectiveness and shows the motioncentric paradigm's promising potential when combined with appearance matching.
引用
收藏
页码:8101 / 8110
页数:10
相关论文
共 50 条
  • [21] Bioinspired point cloud representation: 3D object tracking
    Sergio Orts-Escolano
    Jose Garcia-Rodriguez
    Miguel Cazorla
    Vicente Morell
    Jorge Azorin
    Marcelo Saval
    Alberto Garcia-Garcia
    Victor Villena
    Neural Computing and Applications, 2018, 29 : 663 - 672
  • [22] Bioinspired point cloud representation: 3D object tracking
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Cazorla, Miguel
    Morell, Vicente
    Azorin, Jorge
    Saval, Marcelo
    Garcia-Garcia, Alberto
    Villena, Victor
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09): : 663 - 672
  • [23] 3D SaccadeNet: A Single-Shot 3D Object Detector for LiDAR Point Clouds
    Wen, Lihua
    Vo, Xuan-Thuy
    Jo, Kang-Hyun
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1225 - 1230
  • [24] Real-Time Object Tracking in Sparse Point Clouds based on 3D Interpolation
    Lee, Yeon-Jun
    Seo, Seung-Woo
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 4804 - 4811
  • [25] Leveraging Shape Completion for 3D Siamese Tracking
    Giancola, Silvio
    Zarzar, Jesus
    Ghanem, Bernard
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1359 - 1368
  • [26] Tracking a rigid object in 3D from a single camera
    Wang, H
    Li, Z
    AUTOMATIC INSPECTION AND NOVEL INSTRUMENTATION, 1997, 3185 : 78 - 89
  • [27] 3D object tracking using a single perspective projection
    Habets, D
    Pollmann, S
    Holdsworth, D
    MEDICAL PHYSICS, 2002, 29 (06) : 1353 - 1353
  • [28] Exploiting More Information in Sparse Point Cloud for 3D Single Object Tracking
    Cui, Yubo
    Shan, Jiayao
    Gu, Zuoxu
    Li, Zhiheng
    Fang, Zheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11926 - 11933
  • [29] F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single Object Tracking
    Zou, Hao
    Cui, Jinhao
    Kong, Xin
    Zhang, Chujuan
    Liu, Yong
    Wen, Feng
    Li, Wanlong
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8133 - 8139
  • [30] Multi-Correlation Siamese Transformer Network With Dense Connection for 3D Single Object Tracking
    Feng, Shihao
    Liang, Pengpeng
    Gao, Jin
    Cheng, Erkang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (12) : 8066 - 8073