Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds

被引:28
|
作者
Zheng, Chaoda [1 ,2 ,3 ]
Yan, Xu [1 ,2 ,3 ]
Zhang, Haiming [1 ,2 ,3 ]
Wang, Baoyuan [4 ]
Cheng, Shenghui [5 ]
Cui, Shuguang [1 ,2 ,3 ]
Li, Zhen [1 ,2 ,3 ]
机构
[1] Chinese Univ Hong Kong Shenzhen, Shenzhen, Peoples R China
[2] Future Network Intelligence Inst, Shenzhen, Peoples R China
[3] Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[4] Xiaobing AI, Beijing, Peoples R China
[5] Westlake Univ, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D single object tracking (3D SOT) in LiDAR point clouds plays a crucial role in autonomous driving. Current approaches all follow the Siamese paradigm based on appearance matching. However, LiDAR point clouds are usually textureless and incomplete, which hinders effective appearance matching. Besides, previous methods greatly overlook the critical motion clues among targets. In this work, beyond 3D Siamese tracking, we introduce a motion-centric paradigm to handle 3D SOT from a new perspective. Following this paradigm, we propose a matching free two-stage tracker M-2-Track. At the 1st-stage, M-2-Track localizes the target within successive frames via motion transformation. Then it refines the target box through motion-assisted shape completion at the 2nd-stage. Extensive experiments confirm that M-2-Track significantly outperforms previous state-of-the-arts on three large-scale datasets while running at 57FPS (similar to 8%, similar to 17% and similar to 22% precision gains on KITTI, NuScenes, and Waymo Open Dataset respectively). Further analysis verifies each component's effectiveness and shows the motioncentric paradigm's promising potential when combined with appearance matching.
引用
收藏
页码:8101 / 8110
页数:10
相关论文
共 50 条
  • [1] An Effective Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds
    Zheng, Chaoda
    Yan, Xu
    Zhang, Haiming
    Wang, Baoyuan
    Cheng, Shenghui
    Cui, Shuguang
    Li, Zhen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 43 - 60
  • [2] 3D Siamese Transformer Network for Single Object Tracking on Point Clouds
    Hui, Le
    Wang, Lingpeng
    Tang, Linghua
    Lan, Kaihao
    Xie, Jin
    Yang, Jian
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 293 - 310
  • [3] Point Siamese Network for Person Tracking Using 3D Point Clouds
    Cui, Yubo
    Fang, Zheng
    Zhou, Sifan
    SENSORS, 2020, 20 (01)
  • [4] Motion-to-Matching: A Mixed Paradigm for 3D Single Object Tracking
    Li, Zhiheng
    Lin, Yu
    Cui, Yubo
    Li, Shuo
    Fang, Zheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1468 - 1475
  • [5] Iterative Siamese Attention Mechanism for 3D Single Object Tracking
    Li, Jian
    Wu, Qiaoyun
    Yi, Cheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5456 - 5463
  • [6] 3D Single-Object Tracking in Point Clouds with High Temporal Variation
    Wu, Qiao
    Sun, Kun
    An, Pei
    Salzmann, Mathieu
    Zhang, Yanning
    Yang, Jiaqi
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 279 - 296
  • [7] Modeling Continuous Motion for 3D Point Cloud Object Tracking
    Luo, Zhipeng
    Zhang, Gongjie
    Zhou, Changqing
    Wu, Zhonghua
    Tao, Qingyi
    Lu, Lewei
    Lu, Shijian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4026 - 4034
  • [8] PTT: Point-Track-Transformer Module for 3D Single Object Tracking in Point Clouds
    Shan, Jiayao
    Zhou, Sifan
    Fang, Zheng
    Cui, Yubo
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 1310 - 1316
  • [9] Self Supervised Learning for Multiple Object Tracking in 3D Point Clouds
    Kumar, Aakash
    Kini, Jyoti
    Mian, Ajmal
    Shah, Mubarak
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3754 - 3761
  • [10] SPAN: siampillars attention network for 3D object tracking in point clouds
    Zhuang, Yi
    Zhao, Haitao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (08) : 2105 - 2117