Discrepancy Theory and Quasi-Monte Carlo Integration

被引:24
|
作者
Dick, Josef [1 ]
Pillichshammer, Friedrich [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Financial Math, A-4040 Linz, Austria
来源
关键词
BY-COMPONENT CONSTRUCTION; WEIGHTED L-2 DISCREPANCY; POLYNOMIAL LATTICE RULES; MEAN SQUARES PROBLEM; MULTIVARIATE INTEGRATION; DIGITAL NETS; NUMERICAL-INTEGRATION; STAR-DISCREPANCY; EXPLICIT CONSTRUCTIONS; STRONG TRACTABILITY;
D O I
10.1007/978-3-319-04696-9_9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter we showthe deep connections between discrepancy theory on the one hand and quasi-Monte Carlo integration on the other. Discrepancy theory was established as an area of research going back to the seminal paper by Weyl [117], whereas Monte Carlo (and later quasi-Monte Carlo) was invented in the 1940s by John von Neumann and Stanislaw Ulam to solve practical problems. The connection between these areas is well understood and will be presented here. We further include state of the art methods for quasi-Monte Carlo integration.
引用
收藏
页码:539 / 619
页数:81
相关论文
共 50 条
  • [41] Error bounds for quasi-Monte Carlo integration with uniform point sets
    Niederreiter, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (02) : 283 - 292
  • [42] An analysis of quasi-Monte Carlo integration applied to the transillumination radiosity method
    SzirmayKalos, L
    Foris, T
    Neumann, L
    Csebfalvi, B
    [J]. COMPUTER GRAPHICS FORUM, 1997, 16 (03) : C271 - C281
  • [43] A review of Monte Carlo and quasi-Monte Carlo sampling techniques
    Hung, Ying-Chao
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [44] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [45] Quasi-Monte Carlo rules for numerical integration over the unit sphere
    Brauchart, Johann S.
    Dick, Josef
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (03) : 473 - 502
  • [46] A new quasi-Monte Carlo algorithm for numerical integration of smooth functions
    Atanassov, EI
    Dimov, IT
    Durchova, MK
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 128 - 135
  • [47] Quasi-monte carlo methods for numerical integration of multivariate Haar series
    Karl Entacher
    [J]. BIT Numerical Mathematics, 1997, 37 : 846 - 861
  • [48] Bidirectional ray tracing for the integration of illumination by the quasi-Monte Carlo method
    Voloboi, AG
    Galaktionov, VA
    Dmitriev, KA
    Kopylov, EA
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2004, 30 (05) : 258 - 265
  • [49] Quasi-Monte Carlo integration of characteristic functions and the rejection sampling method
    Wang, XQ
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 16 - 26
  • [50] Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion
    Dick, Josef
    Gantner, Robert N.
    Le Gia, Quoc T.
    Schwab, Christoph
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) : 144 - 172