Discrepancy Theory and Quasi-Monte Carlo Integration

被引:24
|
作者
Dick, Josef [1 ]
Pillichshammer, Friedrich [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Financial Math, A-4040 Linz, Austria
来源
关键词
BY-COMPONENT CONSTRUCTION; WEIGHTED L-2 DISCREPANCY; POLYNOMIAL LATTICE RULES; MEAN SQUARES PROBLEM; MULTIVARIATE INTEGRATION; DIGITAL NETS; NUMERICAL-INTEGRATION; STAR-DISCREPANCY; EXPLICIT CONSTRUCTIONS; STRONG TRACTABILITY;
D O I
10.1007/978-3-319-04696-9_9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this chapter we showthe deep connections between discrepancy theory on the one hand and quasi-Monte Carlo integration on the other. Discrepancy theory was established as an area of research going back to the seminal paper by Weyl [117], whereas Monte Carlo (and later quasi-Monte Carlo) was invented in the 1940s by John von Neumann and Stanislaw Ulam to solve practical problems. The connection between these areas is well understood and will be presented here. We further include state of the art methods for quasi-Monte Carlo integration.
引用
收藏
页码:539 / 619
页数:81
相关论文
共 50 条
  • [31] Quasi-Monte Carlo Software
    Choi, Sou-Cheng T.
    Hickernell, Fred J.
    Jagadeeswaran, Rathinavel
    McCourt, Michael J.
    Sorokin, Aleksei G.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 23 - 47
  • [32] Langevin Quasi-Monte Carlo
    Liu, Sifan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [33] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [34] On quasi-Monte Carlo integrations
    Sobol, IM
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [35] Quasi-Monte Carlo integration using digital nets with antithetics
    Goda, Takashi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 304 : 26 - 42
  • [36] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [37] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [38] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [39] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [40] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    [J]. SIAM REVIEW, 1968, 10 (03) : 303 - &