Structure properties of evolutionary spatially embedded networks

被引:5
|
作者
Hui, Z. [1 ,2 ,3 ]
Li, W. [2 ]
Cai, X. [2 ]
Greneche, J. M. [3 ]
Wang, Q. A. [1 ,3 ]
机构
[1] LUNAM Univ, ISMANS, LP2SC, F-72000 Le Mans, France
[2] Hua Zhong Cent China Normal Univ, Inst Particle Phys, Complex Sci Ctr, Wuhan 430079, Peoples R China
[3] Univ Maine, IMMM, UMR CNRS 6283, F-72085 Le Mans, France
基金
中国国家自然科学基金;
关键词
Euclidean distance preference; Small world network; Phase transition; Master equation method; Mean-field approximation; WORLD; MODEL;
D O I
10.1016/j.physa.2013.01.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is a modeling of evolutionary networks embedded in one or two dimensional configuration space. The evolution is based on two attachments depending on degree and spatial distance. The probability for a new node n to connect with a previous node i at distance r(ni) follows ak(i)/Sigma(j)k(j) + (1 - a) r(m)(-alpha)/Sigma(j)r(nj)(-alpha), where k(i) is the degree of node i, alpha and a are tunable parameters. In spatial driven model (a = 0), the spatial distance distribution follows the power-law feature. The mean topological distance l and the clustering coefficient C exhibit phase transitions at same critical values of alpha which change with the dimensionality d of the embedding space. When a not equal 0, the degree distribution follows the "shifted power law" (SPL) which interpolates between exponential and scale-free distributions depending on the value of a. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1909 / 1919
页数:11
相关论文
共 50 条
  • [21] Interdependent Spatially Embedded Networks: Dynamics at Percolation Threshold
    Danziger, Michael M.
    Bashan, Amir
    Berezin, Yehiel
    Havlin, Shlomo
    2013 INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2013, : 614 - 620
  • [22] Predictability of large-scale spatially embedded networks
    Butts, CT
    DYNAMIC SOCIAL NETWORK MODELING AND ANALYSIS, 2003, : 313 - 323
  • [23] Greedy optimization for growing spatially embedded oscillatory networks
    Beecroft, Damien
    Restrepo, Juan G.
    Angulo-Garcia, David
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [24] Spatially embedded socio-technical complex networks
    Emanuele Strano
    Massimiliano Zanin
    Ernesto Estrada
    Fabrizio Lillo
    The European Physical Journal Special Topics, 2013, 215 : 1 - 4
  • [25] Spatially embedded socio-technical complex networks
    Strano, Emanuele
    Zanin, Massimiliano
    Estrada, Ernesto
    Lillo, Fabrizio
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 215 (01): : 1 - 4
  • [26] Cascading Failures in Spatially-Embedded Random Networks
    Asztalos, Andrea
    Sreenivasan, Sameet
    Szymanski, Boleslaw K.
    Korniss, Gyorgy
    PLOS ONE, 2014, 9 (01):
  • [27] Boundary effects in network measures of spatially embedded networks
    Rheinwalt, Aljoscha
    Marwan, Norbert
    Kurths, Juergen
    Werner, Peter
    Gerstengarbe, Friedrich-Wilhelm
    EPL, 2012, 100 (02)
  • [28] Generation of Synthetic Spatially Embedded Power Grid Networks
    Soltan, Saleh
    Zussman, Gil
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [29] Evolutionary Computation on Complex Spatially-Distributed Networks
    Pilat, Marcin L.
    Pestov, Irene
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2107 - 2108
  • [30] Modeling of spatially embedded networks via regional spatial graph convolutional networks
    Fan, Xudong
    Hackl, Jurgen
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2025, 40 (04) : 427 - 444