Structure properties of evolutionary spatially embedded networks

被引:5
|
作者
Hui, Z. [1 ,2 ,3 ]
Li, W. [2 ]
Cai, X. [2 ]
Greneche, J. M. [3 ]
Wang, Q. A. [1 ,3 ]
机构
[1] LUNAM Univ, ISMANS, LP2SC, F-72000 Le Mans, France
[2] Hua Zhong Cent China Normal Univ, Inst Particle Phys, Complex Sci Ctr, Wuhan 430079, Peoples R China
[3] Univ Maine, IMMM, UMR CNRS 6283, F-72085 Le Mans, France
基金
中国国家自然科学基金;
关键词
Euclidean distance preference; Small world network; Phase transition; Master equation method; Mean-field approximation; WORLD; MODEL;
D O I
10.1016/j.physa.2013.01.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is a modeling of evolutionary networks embedded in one or two dimensional configuration space. The evolution is based on two attachments depending on degree and spatial distance. The probability for a new node n to connect with a previous node i at distance r(ni) follows ak(i)/Sigma(j)k(j) + (1 - a) r(m)(-alpha)/Sigma(j)r(nj)(-alpha), where k(i) is the degree of node i, alpha and a are tunable parameters. In spatial driven model (a = 0), the spatial distance distribution follows the power-law feature. The mean topological distance l and the clustering coefficient C exhibit phase transitions at same critical values of alpha which change with the dimensionality d of the embedding space. When a not equal 0, the degree distribution follows the "shifted power law" (SPL) which interpolates between exponential and scale-free distributions depending on the value of a. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1909 / 1919
页数:11
相关论文
共 50 条
  • [11] Fast Generation of Spatially Embedded Random Networks
    Parsonage, Eric
    Roughan, Matthew
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2017, 4 (02): : 112 - 119
  • [12] Localized attacks on spatially embedded networks with dependencies
    Yehiel Berezin
    Amir Bashan
    Michael M. Danziger
    Daqing Li
    Shlomo Havlin
    Scientific Reports, 5
  • [13] The extreme vulnerability of interdependent spatially embedded networks
    Amir Bashan
    Yehiel Berezin
    Sergey V. Buldyrev
    Shlomo Havlin
    Nature Physics, 2013, 9 : 667 - 672
  • [14] Localized attacks on spatially embedded networks with dependencies
    Berezin, Yehiel
    Bashan, Amir
    Danziger, Michael M.
    Li, Daqing
    Havlin, Shlomo
    SCIENTIFIC REPORTS, 2015, 5
  • [15] Optimal transport exponent in spatially embedded networks
    Li, G.
    Reis, S. D. S.
    Moreira, A. A.
    Havlin, S.
    Stanley, H. E.
    Andrade, J. S., Jr.
    PHYSICAL REVIEW E, 2013, 87 (04)
  • [17] Data fusion reconstruction of spatially embedded complex networks
    Sun, Jie
    Quevedo, Fernando J.
    Bollt, Erik M.
    JOURNAL OF COMPLEX NETWORKS, 2022, 10 (04)
  • [18] Spatially embedded growing small-world networks
    Ari Zitin
    Alexander Gorowara
    Shane Squires
    Mark Herrera
    Thomas M. Antonsen
    Michelle Girvan
    Edward Ott
    Scientific Reports, 4
  • [19] Boundary effects in network measures of spatially embedded networks
    Rheinwalt, Aljoscha
    Marwan, Norbert
    Kurths, Juergen
    Werner, Peter
    Gerstengarbe, Friedrich-Wilhelm
    2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), 2012, : 500 - 505
  • [20] Spatially embedded growing small- world networks
    Zitin, Ari
    Gorowara, Alexander
    Squires, Shane
    Herrera, Mark
    Antonsen, Thomas M.
    Girvan, Michelle
    Ott, Edward
    SCIENTIFIC REPORTS, 2014, 4