Structure properties of evolutionary spatially embedded networks

被引:5
|
作者
Hui, Z. [1 ,2 ,3 ]
Li, W. [2 ]
Cai, X. [2 ]
Greneche, J. M. [3 ]
Wang, Q. A. [1 ,3 ]
机构
[1] LUNAM Univ, ISMANS, LP2SC, F-72000 Le Mans, France
[2] Hua Zhong Cent China Normal Univ, Inst Particle Phys, Complex Sci Ctr, Wuhan 430079, Peoples R China
[3] Univ Maine, IMMM, UMR CNRS 6283, F-72085 Le Mans, France
基金
中国国家自然科学基金;
关键词
Euclidean distance preference; Small world network; Phase transition; Master equation method; Mean-field approximation; WORLD; MODEL;
D O I
10.1016/j.physa.2013.01.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work is a modeling of evolutionary networks embedded in one or two dimensional configuration space. The evolution is based on two attachments depending on degree and spatial distance. The probability for a new node n to connect with a previous node i at distance r(ni) follows ak(i)/Sigma(j)k(j) + (1 - a) r(m)(-alpha)/Sigma(j)r(nj)(-alpha), where k(i) is the degree of node i, alpha and a are tunable parameters. In spatial driven model (a = 0), the spatial distance distribution follows the power-law feature. The mean topological distance l and the clustering coefficient C exhibit phase transitions at same critical values of alpha which change with the dimensionality d of the embedding space. When a not equal 0, the degree distribution follows the "shifted power law" (SPL) which interpolates between exponential and scale-free distributions depending on the value of a. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1909 / 1919
页数:11
相关论文
共 50 条
  • [1] Structural properties of spatially embedded networks
    Kosmidis, K.
    Havlin, S.
    Bunde, A.
    EPL, 2008, 82 (04)
  • [2] Dimension of spatially embedded networks
    Li Daqing
    Kosmas Kosmidis
    Armin Bunde
    Shlomo Havlin
    NATURE PHYSICS, 2011, 7 (06) : 481 - 484
  • [3] Spatially embedded random networks
    Barnett, L.
    Di Paolo, E.
    Bullock, S.
    PHYSICAL REVIEW E, 2007, 76 (05)
  • [4] Spatially embedded neuromorphic networks
    Milisav, Filip
    Misic, Bratislav
    NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1342 - 1343
  • [5] Spatially embedded neuromorphic networks
    Filip Milisav
    Bratislav Misic
    Nature Machine Intelligence, 2023, 5 : 1342 - 1343
  • [6] Structural and functional properties of spatially embedded scale-free networks
    Emmerich, Thorsten
    Bunde, Armin
    Havlin, Shlomo
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [7] Evolution of cooperation on spatially embedded networks
    Buesser, Pierre
    Tomassini, Marco
    PHYSICAL REVIEW E, 2012, 86 (05)
  • [8] Robustness of a network formed of spatially embedded networks
    Shekhtman, Louis M.
    Berezin, Yehiel
    Danziger, Michael M.
    Havlin, Shlomo
    PHYSICAL REVIEW E, 2014, 90 (01)
  • [9] Scale effects on spatially embedded contact networks
    Gao, Peng
    Bian, Ling
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2016, 59 : 142 - 151
  • [10] The extreme vulnerability of interdependent spatially embedded networks
    Bashan, Amir
    Berezin, Yehiel
    Buldyrev, Sergey V.
    Havlin, Shlomo
    NATURE PHYSICS, 2013, 9 (10) : 667 - 672