Maximum average degree of list-edge-critical graphs and Vizing's conjecture

被引:0
|
作者
Harrelson, Joshua [1 ]
Reavis, Hannah [2 ]
机构
[1] Middle Georgia State Univ, Fac Math & Stat, Macon, GA 31206 USA
[2] Middle Georgia State Univ, Dept Math & Stat, Macon, GA USA
关键词
list-edge-coloring; maximum average degree; discharging; TOTAL COLORINGS; PLANAR GRAPHS;
D O I
10.5614/ejgta.2022.10.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vizing conjectured that X '(l) (G) <= Delta + 1 for all graphs. For a graph G and nonnegative integer k, we say G is a k-list-edge-critical graph if X '(l) (G) > k, but X '(l) (G- e) <= k for all e. E(G). We use known results for list-edge-critical graphs to verify Vizing's conjecture for G with mad(G) <Delta+3/2 and Delta <= 9.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 50 条