Maximum average degree of list-edge-critical graphs and Vizing's conjecture

被引:0
|
作者
Harrelson, Joshua [1 ]
Reavis, Hannah [2 ]
机构
[1] Middle Georgia State Univ, Fac Math & Stat, Macon, GA 31206 USA
[2] Middle Georgia State Univ, Dept Math & Stat, Macon, GA USA
关键词
list-edge-coloring; maximum average degree; discharging; TOTAL COLORINGS; PLANAR GRAPHS;
D O I
10.5614/ejgta.2022.10.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vizing conjectured that X '(l) (G) <= Delta + 1 for all graphs. For a graph G and nonnegative integer k, we say G is a k-list-edge-critical graph if X '(l) (G) > k, but X '(l) (G- e) <= k for all e. E(G). We use known results for list-edge-critical graphs to verify Vizing's conjecture for G with mad(G) <Delta+3/2 and Delta <= 9.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 50 条
  • [21] An extension of Vizing's adjacency lemma on edge chromatic critical graphs
    Choudum, SA
    Kayathri, K
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 97 - 103
  • [22] The list version of the Borodin-Kostochka conjecture for graphs with large maximum degree
    Choi, Ilkyoo
    Kierstead, H. A.
    Rabern, Landon
    DISCRETE MATHEMATICS, 2023, 346 (11)
  • [23] Graphs with large maximum degree containing no edge-critical graphs
    Huo, Qingyi
    Yuan, Long-Tu
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [24] List strong edge coloring of planar graphs with maximum degree 4
    Chen, Ming
    Hu, Jie
    Yu, Xiaowei
    Zhou, Shan
    DISCRETE MATHEMATICS, 2019, 342 (05) : 1471 - 1480
  • [25] List strong edge-coloring of graphs with maximum degree 4
    Zhang, Baochen
    Chang, Yulin
    Hu, Jie
    Ma, Meijie
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [26] List r-dynamic coloring of graphs with small maximum average degree
    Zhu, Junlei
    Bu, Yuehua
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 254 - 263
  • [27] List 3-dynamic coloring of graphs with small maximum average degree
    Kim, Seog-Jin
    Park, Boram
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1406 - 1418
  • [28] Reducing Vizing’s 2-Factor Conjecture to Meredith Extension of Critical Graphs
    Xiaodong Chen
    Qing Ji
    Mingda Liu
    Graphs and Combinatorics, 2020, 36 : 1585 - 1591
  • [29] Proof of Melnikov-Vizing conjecture for multigraphs with maximum degree at most 3
    Pyatkin, AV
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 275 - 278
  • [30] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171