共 50 条
Maximum average degree of list-edge-critical graphs and Vizing's conjecture
被引:0
|作者:
Harrelson, Joshua
[1
]
Reavis, Hannah
[2
]
机构:
[1] Middle Georgia State Univ, Fac Math & Stat, Macon, GA 31206 USA
[2] Middle Georgia State Univ, Dept Math & Stat, Macon, GA USA
关键词:
list-edge-coloring;
maximum average degree;
discharging;
TOTAL COLORINGS;
PLANAR GRAPHS;
D O I:
10.5614/ejgta.2022.10.2.4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Vizing conjectured that X '(l) (G) <= Delta + 1 for all graphs. For a graph G and nonnegative integer k, we say G is a k-list-edge-critical graph if X '(l) (G) > k, but X '(l) (G- e) <= k for all e. E(G). We use known results for list-edge-critical graphs to verify Vizing's conjecture for G with mad(G) <Delta+3/2 and Delta <= 9.
引用
收藏
页码:385 / 392
页数:8
相关论文