Traversal Languages Capturing Isomorphism Classes of Sierpinski Gaskets

被引:0
|
作者
Jonoska, Natasa [1 ]
Krajcevski, Mile [1 ]
McColm, Gregory [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
SUBSTITUTION TILINGS; DNA ORIGAMI; HANOI; NANOSTRUCTURES; TOWERS;
D O I
10.1007/978-3-319-41312-9_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider recursive structural assembly using regular simplexes such that a structure at every level is obtained by joining d + 1 structures from a previous level. The resulting structures are similar to the Sierpinski gasket. We use intersection graphs and index sequences to describe these structures. We observe that for each d > 1 there are uncountably many isomorphism classes of these structures. Traversal languages that consist of labels of walks that start at a given vertex can be associated with these structures, and we find that these traversal languages capture the isomorphism classes of the structures.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 50 条
  • [41] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    B. M. Hambly
    Probability Theory and Related Fields, 2000, 117 : 221 - 247
  • [42] Large Deviations for Brownian Motion on Scale Irregular Sierpinski Gaskets
    Noda, Hideaki
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 852 - 875
  • [43] ON THE SPATIAL FOURIER-TRANSFORMS OF THE PASCAL-SIERPINSKI GASKETS
    LAKHTAKIA, A
    HOLTER, NS
    MESSIER, R
    VARADAN, VK
    VARADAN, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (15): : 3147 - 3152
  • [44] Covering Maps and Periodic Functions on Higher Dimensional Sierpinski Gaskets
    Ruan, Huo-Jun
    Strichartz, Robert S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (05): : 1151 - 1181
  • [45] PHASE-TRANSITIONS ON FRACTALS .2. SIERPINSKI GASKETS
    GEFEN, Y
    AHARONY, A
    SHAPIR, Y
    MANDELBROT, BB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02): : 435 - 444
  • [46] Studies on critical dynamics of Gaussian spin systems on Sierpinski gaskets
    Chen, JZ
    Zhu, JY
    ACTA PHYSICA SINICA, 2001, 50 (07) : 1340 - 1345
  • [47] The Non-Degeneracy of Harmonic Structures on Planar Sierpinski Gaskets
    Cao, Shiping
    Qiu, Hua
    ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (04) : 510 - 516
  • [48] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    Hambly, BM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 221 - 247
  • [49] SPECTRAL DIMENSION OF ELASTIC SIERPINSKI GASKETS WITH GENERAL ELASTIC FORCES
    LIU, SH
    LIU, AJ
    PHYSICAL REVIEW B, 1985, 32 (07): : 4753 - 4755
  • [50] Convergence of Energy Forms on Sierpinski Gaskets with Added Rotated Triangle
    Shiping Cao
    Potential Analysis, 2023, 59 : 1793 - 1825