Greener production of dimethyl carbonate by the Power-to-Fuel concept: a comparative techno-economic analysis

被引:36
|
作者
Huang, Hong [1 ]
Samsun, Remzi Can [1 ]
Peters, Ralf [1 ]
Stolten, Detlef [2 ,3 ,4 ]
机构
[1] Forschungszentrum Julich, Electrochem Proc Engn IEK 14, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Technoecon Syst Anal IEK 3, D-52425 Julich, Germany
[3] JARA ENERGY, D-52056 Aachen, Germany
[4] Rhein Westfal TH Aachen, Chair Fuel Cells, D-52072 Aachen, Germany
关键词
Carbonylation - Costs - Economic analysis - Energy efficiency - Methanol - Investments - Carbon dioxide - Carbonation - Metabolism;
D O I
10.1039/d0gc03865b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Power-to-Fuel is an emerging concept that uses surplus electricity-powered H-2 and CO2 to produce future fuels. Previously studied fuel candidates include methanol, Fischer-Tropsch, and ethers. Apart from these candidates, dimethyl carbonate (DMC) is increasingly recognized as a viable fuel. Various new production pathways are being actively developed encouraged by its wider range of applications. In this study, we first performed a preliminary screening of available pathways with respect to their levels of technical maturity and their compliance with green chemistry principles. The selected pathways are oxidative carbonylation of methanol, direct urea methanolysis as well as indirect urea methanolysis via ethylene carbonate and propylene carbonate routes. We designed the processes and simulated the material and energy balances in the context of the Power-to-Fuel concept. Subsequently, a techno-economic analysis was performed to assess their viability. From the analysis, we found that the process steps of methanol and urea syntheses are the major capital investment contributors, rather than the DMC synthesis step itself. The direct urea methanolysis exhibits the highest energy efficiency of 48.5% and the lowest cost of manufacturing (COM) of 2.19 euro per l(DE). The oxidative carbonylation of methanol is featured with the lowest capital expenditure (CAPEX) and utility consumption. Both the indirect urea methanolysis pathways have better conversions than the direct urea methanolysis, but their advantages can only be seen provided that the utility consumption is minimised. Under current market conditions, only the direct urea methanolysis pathway is slightly profitable by the net present value (NPV) and minimum selling price (MSP). The hydrogen price is found to be the dominant economic driver of all pathways, with the oxidative carbonylation of methanol in particular.
引用
收藏
页码:1734 / 1747
页数:14
相关论文
共 50 条
  • [21] Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant
    Park, Kyungtae
    Oh, Soung-Ryong
    Won, Wangyun
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (03) : 345 - 355
  • [22] Techno-Economic Analysis of Automated iPSC Production
    Niessing, Bastian
    Kiesel, Raphael
    Herbst, Laura
    Schmitt, Robert H.
    [J]. PROCESSES, 2021, 9 (02) : 1 - 15
  • [23] Techno-economic analysis on ethyl maltol production
    Zhu, Guilin
    [J]. Xiandai Huagong/Modern Chemical Industry, 2000, 20 (09): : 52 - 53
  • [24] Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant
    Kyungtae Park
    Soung-Ryong Oh
    Wangyun Won
    [J]. Korean Journal of Chemical Engineering, 2019, 36 : 345 - 355
  • [25] Techno-Economic Analysis of Interesterification for Biodiesel Production
    Dougher, Molly
    Soh, Lindsay
    Bala, Aseel M.
    [J]. ENERGY & FUELS, 2023, 37 (04) : 2912 - 2925
  • [26] Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel
    Uddin, Md Mosleh
    Simson, Amanda
    Wright, Mark Mba
    [J]. ENERGY, 2020, 211
  • [27] Techno-economic analysis of a concrete storage concept for parabolic trough solar power plants
    Prieto, Cristina
    Pino, Francisco Javier
    Cabeza, Luisa F.
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 58
  • [28] Techno-economic analysis of jet-fuel production from biorefinery waste lignin
    Shen, Rongchun
    Tao, Ling
    Yang, Bin
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (03): : 486 - 501
  • [29] Wind Turbine Power System for Hydrogen Production and Storage: Techno-economic Analysis
    Tebibel, Hammou
    [J]. 2018 INTERNATIONAL CONFERENCE ON WIND ENERGY AND APPLICATIONS IN ALGERIA (ICWEAA' 2018), 2018,
  • [30] Process and Techno-Economic Analysis for Fuel and Chemical Production by Hydrodeoxygenation of Bio-Oil
    Bagnato, Giuseppe
    Sanna, Aimaro
    [J]. CATALYSTS, 2019, 9 (12)