A Pieri-type formula for the K-theory of a flag manifold

被引:9
|
作者
Lenart, Cristian [1 ]
Sottile, Frank
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Grothendieck polynomial; Schubert variety; Pieri's formula; Bruhat order;
D O I
10.1090/S0002-9947-06-04043-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive explicit Pieri-type multiplication formulas in the Grothendieck ring of a flag variety. These expand the product of an arbitrary Schubert class and a special Schubert class in the basis of Schubert classes. These special Schubert classes are indexed by a cycle which has either the form (k-p+1, k-p+2,..., k+1) or the form (k+p, k+p-1,...,k), and are pulled back from a Grassmannian projection. Our formulas are in terms of certain labeled chains in the k-Bruhat order on the symmetric group and are combinatorial in that they involve no cancellations. We also show that the multiplicities in the Pieri formula are naturally certain binomial coefficients.
引用
收藏
页码:2317 / 2342
页数:26
相关论文
共 50 条
  • [31] THE GAMMA FILTRATIONS OF K-THEORY OF COMPLETE FLAG VARIETIES
    Yagita, Nobuaki
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (01) : 130 - 159
  • [32] Euler characteristics in the quantum K-theory of flag varieties
    Buch, Anders S.
    Chung, Sjuvon
    Li, Changzheng
    Mihalcea, Leonardo C.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (02):
  • [33] A PIERI-TYPE FORMULA FOR SP(2M)/P AND SO(2M+1)/P
    PRAGACZ, P
    RATAJSKI, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (11): : 1035 - 1040
  • [34] The Log Product Formula in Quantum K-theory
    Chou, You-Cheng
    Herr, Leo
    Lee, Yuan-Pin
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 175 (02) : 225 - 252
  • [35] A Splitting Formula for Lower Algebraic K-Theory
    Farley, Daniel Scott
    Ortiz, Ivonne Johanna
    ALGEBRAIC K-THEORY OF CRYSTALLOGRAPHIC GROUPS: THE THREE-DIMENSIONAL SPLITTING CASE, 2014, 2113 : 45 - 57
  • [36] LEFSCHETZ FORMULA IN ALGEBRAIC EQUIVARIANT K-THEORY
    THOMASON, RW
    DUKE MATHEMATICAL JOURNAL, 1992, 68 (03) : 447 - 462
  • [37] Differential K-theory and localization formula for η-invariants
    Liu, Bo
    Ma, Xiaonan
    INVENTIONES MATHEMATICAE, 2020, 222 (02) : 545 - 613
  • [38] The product formula in unitary deformation K-theory
    Lawson, Tyler
    K-THEORY, 2006, 37 (04): : 395 - 422
  • [39] Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds
    Naito, Satoshi
    Orr, Daniel
    Sagaki, Daisuke
    ADVANCES IN MATHEMATICS, 2021, 387
  • [40] EQUIVARIANT K-THEORY OF FLAG VARIETIES REVISITED AND RELATED RESULTS
    Uma, V.
    COLLOQUIUM MATHEMATICUM, 2013, 132 (02) : 151 - 175