Computation of fractional integrals via functions of hypergeometric and Bessel type

被引:9
|
作者
Kilbas, AA
Trujillo, JJ [1 ]
机构
[1] Belarusian State Univ, Dept Math & Mech, Minsk 220050, BELARUS
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
关键词
Liouville and Erdelyi-Kober-type fractional integrals; Tricomi confluent hypergeometric function; modified Bessel function of the third kind;
D O I
10.1016/S0377-0427(00)00291-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to computation of the fractional integrals of power exponential functions. It is considered a function lambda(gamma,sigma)((beta))(z) defined by lambda(gamma,sigma)((beta))(Z)=beta/Gamma(gamma + 1 - 1/beta) integral(1)(infinity)(t(beta) - 1)(gamma-1/beta)t(sigma)e(-2t) dt with positive beta and complex gamma, sigma and z such that Re(gamma) > (1/beta)- 1 and Re(z) > 0. The special cases are discussed when lambda(gamma,sigma)((beta))(z) is expressed in terms of the Tricomi confluent hypergeometric function Psi(a,c;x) and of modified Bessel function of the third kind K-y(x). Representations of these functions via fractional integrals are proved. The results obtained apply to compute fractional integrals of power exponential functions in terms of lambda(gamma,sigma)((beta))(x), Psi(a,c;x) and K-y(x). Examples are considered. (C) 2000 Elsevier Science B.V. All rights reserved. MSC 26A33; 33C15; 33C10.
引用
收藏
页码:223 / 239
页数:17
相关论文
共 50 条