Computation of fractional integrals via functions of hypergeometric and Bessel type

被引:9
|
作者
Kilbas, AA
Trujillo, JJ [1 ]
机构
[1] Belarusian State Univ, Dept Math & Mech, Minsk 220050, BELARUS
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Tenerife, Spain
关键词
Liouville and Erdelyi-Kober-type fractional integrals; Tricomi confluent hypergeometric function; modified Bessel function of the third kind;
D O I
10.1016/S0377-0427(00)00291-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to computation of the fractional integrals of power exponential functions. It is considered a function lambda(gamma,sigma)((beta))(z) defined by lambda(gamma,sigma)((beta))(Z)=beta/Gamma(gamma + 1 - 1/beta) integral(1)(infinity)(t(beta) - 1)(gamma-1/beta)t(sigma)e(-2t) dt with positive beta and complex gamma, sigma and z such that Re(gamma) > (1/beta)- 1 and Re(z) > 0. The special cases are discussed when lambda(gamma,sigma)((beta))(z) is expressed in terms of the Tricomi confluent hypergeometric function Psi(a,c;x) and of modified Bessel function of the third kind K-y(x). Representations of these functions via fractional integrals are proved. The results obtained apply to compute fractional integrals of power exponential functions in terms of lambda(gamma,sigma)((beta))(x), Psi(a,c;x) and K-y(x). Examples are considered. (C) 2000 Elsevier Science B.V. All rights reserved. MSC 26A33; 33C15; 33C10.
引用
收藏
页码:223 / 239
页数:17
相关论文
共 50 条
  • [21] Some integrals of hypergeometric functions
    A. Biró
    Acta Mathematica Hungarica, 2017, 152 : 58 - 71
  • [22] New special functions of the hypergeometric type and elliptic beta integrals
    Spiridonov, VP
    PHYSICS OF PARTICLES AND NUCLEI, 2001, 32 : S43 - S45
  • [23] Integration by parts formulae for the laws of Bessel bridges via hypergeometric functions
    Altman, Henri Elad
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 11
  • [24] Fractional Hypergeometric Functions
    Jain, Shilpi
    Cattani, Carlo
    Agarwal, Praveen
    SYMMETRY-BASEL, 2022, 14 (04):
  • [25] An expansion of the hypergeometric function in Bessel functions
    Nagel, B
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) : 5910 - 5914
  • [26] GENERALIZATION OF BESSEL AND HYPERGEOMETRIC-FUNCTIONS
    CARMESIN, HO
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (02): : 299 - 305
  • [27] The evaluation of Bessel functions via exp-arc integrals
    Borwein, David
    Borwein, Jonathan M.
    Chan, O-Yeat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 478 - 500
  • [28] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [29] ON INEQUALITIES OF SIMPSON?S TYPE FOR CONVEX FUNCTIONS VIA GENERALIZED FRACTIONAL INTEGRALS
    Kara, Hasan
    Budak, Huseyin
    Ali, Muhammad Aamir
    Hezenci, Fatih
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 806 - 825
  • [30] On new integral addition theorems for bessel functions and series of the hypergeometric type
    Thielman, HP
    ANNALS OF MATHEMATICS, 1930, 31 : 193 - 206