Parallel-in-time Parareal implementation using PETSc

被引:0
|
作者
Caceres Silva, Juan Jose [1 ]
Baran, Benjamin [1 ,2 ,3 ]
Schaerer, Christian [2 ]
机构
[1] Univ Catolica Nuestra Senora Asuncion, Fac Ciencias & Tecnol, Asuncion, Paraguay
[2] Univ Nacl Asuncion, Fac Politecn, LCCA, Campus San Lorenzo, Paraguay
[3] Univ Nacl Este, Fac Politecn, Ciudad Del Este, Paraguay
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work presents implementation details of the Parareal method using PETSc in a distributed and multicore architecture, which is used for the resolution of a parabolic optimal control problem. To this end, this optimization problem is discretized yielding a large KKT linear system. In the context of this work, the Parareal method allows not only to reach problem sizes which normally can not be solved using a single computer, but also allows to speed up the computational resolution time. The implementation developed in this work offers a parallelization relative efficiency for the strong scaling of approximately 70% each time the processes count doubles, while for the weak scaling it is 75% each time the processes count doubles for a constant solution size per process and 96% each time the processes count doubles for a constant data size per process.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Analysis of the parareal time-parallel time-integration method
    Gander, Martin J.
    Vandewalle, Stefan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (02): : 556 - 578
  • [42] Parallel in time algorithms for quantum control: Parareal time discretization scheme
    Maday, Y
    Turinici, G
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2003, 93 (03) : 223 - 228
  • [43] Parallel-in-Time Solution of Power Systems with Scheduled Events
    Schroder, Jacob B.
    Falgout, Robert D.
    Woodward, Carol S.
    Top, Philip
    Lecouvez, Matthieu
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [44] Parallel Implementation of the FETI DDM Constraint Matrix on Top of PETSc for the PermonFLLOP Package
    Vasatova, Alena
    Cermak, Martin
    Hapla, Vaclav
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT I, 2016, 9573 : 150 - 159
  • [45] Convergence analysis for parallel-in-time solution of hyperbolic systems
    De Sterck, Hans
    Friedhoff, Stephanie
    Howse, Alexander J. M.
    MacLachlan, Scott P.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (01)
  • [46] EFFICIENT PARALLEL-IN-TIME SOLUTION OF TIME-PERIODIC PROBLEMS USING A MULTIHARMONIC COARSE GRID CORRECTION
    Kulchytska-Ruchka, Iryna
    Schoeps, Sebastian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : C61 - C88
  • [47] A PETSc-Based Parallel Implementation of Finite Element Method for Elasticity Problems
    Zhang, Jianfei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [48] Parallel-in-time relaxed Newton method for transient stability analysis
    Zhengzhou Univ, Zhengzhou City, China
    IEE Proc Gener Transm Distrib, 2 (155-159):
  • [49] A parallel-in-time approach for wave-type PDEs
    Ellison, Abe C.
    Fornberg, Bengt
    NUMERISCHE MATHEMATIK, 2021, 148 (01) : 79 - 98
  • [50] Performance of parallel-in-time integration for Rayleigh Benard convection
    Clarke, Andrew
    Davies, Chris
    Ruprecht, Daniel
    Tobias, Steven
    Oishi, Jeffrey S.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2020, 23 (1-4)