Parallel-in-time Parareal implementation using PETSc

被引:0
|
作者
Caceres Silva, Juan Jose [1 ]
Baran, Benjamin [1 ,2 ,3 ]
Schaerer, Christian [2 ]
机构
[1] Univ Catolica Nuestra Senora Asuncion, Fac Ciencias & Tecnol, Asuncion, Paraguay
[2] Univ Nacl Asuncion, Fac Politecn, LCCA, Campus San Lorenzo, Paraguay
[3] Univ Nacl Este, Fac Politecn, Ciudad Del Este, Paraguay
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This work presents implementation details of the Parareal method using PETSc in a distributed and multicore architecture, which is used for the resolution of a parabolic optimal control problem. To this end, this optimization problem is discretized yielding a large KKT linear system. In the context of this work, the Parareal method allows not only to reach problem sizes which normally can not be solved using a single computer, but also allows to speed up the computational resolution time. The implementation developed in this work offers a parallelization relative efficiency for the strong scaling of approximately 70% each time the processes count doubles, while for the weak scaling it is 75% each time the processes count doubles for a constant solution size per process and 96% each time the processes count doubles for a constant data size per process.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] AN EFFICIENT PARALLEL-IN-TIME METHOD FOR OPTIMIZATION WITH PARABOLIC PDEs
    Goetschel, Sebastian
    Minion, Michael L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : C603 - C626
  • [32] Parallel-in-Time Solution of Power Systems with Unscheduled Events
    Gunther, Stefanie
    Falgout, Robert D.
    Top, Philip
    Woodward, Carol S.
    Schroder, Jacob B.
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [33] An Adaptive Parallel-in-Time Method with Application to a Membrane Problem
    Karam, Noha Makhoul
    Nassif, Nabil
    Erhel, Jocelyne
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 707 - 717
  • [34] A parallel-in-time approach for wave-type PDEs
    Abe C. Ellison
    Bengt Fornberg
    Numerische Mathematik, 2021, 148 : 79 - 98
  • [35] AN ASYMPTOTIC PARALLEL-IN-TIME METHOD FOR HIGHLY OSCILLATORY PDES
    Haut, Terry
    Wingate, Beth
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A693 - A713
  • [36] A parallel in time approach for quantum control: the parareal algorithm
    Maday, Y
    Turinici, G
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 62 - 66
  • [37] Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening
    Lunet, Thibaut
    Bodart, Julien
    Gratton, Serge
    Vasseur, Xavier
    COMPUTING AND VISUALIZATION IN SCIENCE, 2018, 19 (1-2) : 31 - 44
  • [38] Exploring Parallel-in-Time Approaches for Eddy Current Problems
    Friedhoff, Stephanie
    Hahne, Jens
    Kulchytska-Ruchka, Iryna
    Schoeps, Sebastian
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 373 - 379
  • [39] Towards scalable parallel-in-time turbulent flow simulations
    Wang, Qiqi
    Gomez, Steven A.
    Blonigan, Patrick J.
    Gregory, Alastair L.
    Qian, Elizabeth Y.
    PHYSICS OF FLUIDS, 2013, 25 (11)
  • [40] PARALLEL-IN-TIME PRECONDITIONER FOR THE SINC-NYSTROM SYSTEMS
    Liu, Jun
    Wu, Shu-Lin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2386 - A2411